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1 Introduction and Motivation

Exascale systems require improving energy efficiency by orders of magnitude to provide un-
precedented levels of performance within limited power envelopes. Meeting these strong energy
efficiency requirements implies using advanced CMOS technologies with tiny devices (i.e. each
gate may consist of few atoms), and thus with higher susceptibility to electromagnetic distur-
bances, environmental conditions, radiation and aging. These reliability concerns coupled with
the fact that an incredibly large number of electronic devices mainly devoted for computation,
connectivity, and storage, will be integrated in the future Exascale systems, puts resilience as
one of the key aspects to be considered in current and future HPC systems.

As a consequence, Exascale systems will suffer dramatically higher fault rates. In this scenario,
classic error detection and correction mechanisms will fail to scale, since they have been devised
to deal with relatively low fault rates. Therefore, Exascale systems cannot rely only on error
detection and correction mechanisms acting once faults have happened, but need instead effective
ways to maximize applications survivability and, consequently, making the system more efficient
and predictable. Exascale systems will require ensuring reliable operation in the presence of very
high failure rates, including transient and permanent faults, steadily degrading hardware while
meeting stringent power constraints and achieving high performance.

1.1 Errors reported in HPC systems

Reliability has already been a concern for HPC systems for decades. As early as 2003, the Big
Mac Virginia Tech’s Advanced Computing facility failed to boot due to the high failure rate in
non-ECC protected memory [86]. The impact of radiation was later confirmed in 2009, when the
Jaguar supercomputer (number 1 in the Top500 list at that time) reported 350 ECC-corrected
errors per minute [86]. However ECC is not enough to deal with increasing fault rates and, for
instance, the Titan supercomputer at Oak Ridge National Lab reported a Mean Time Between
Failure (MTBF) due to detected uncorrectable errors (DUE) caused by radiation of only 44
hours [101].

Reliability concerns affect not only supercomputers, but also data centers. For instance, a recent
study for Facebook data centers reveals that every month 3% of the servers experience errors
corrected in memory, whereas 0.03% of the servers experience DUE in DRAM memory [74].
Thus, only memory errors, despite ECC protection, may make one every 3,000 servers to crash
every month with 2014-2015 technology. Moreover, even correctable errors have a non-negligible
impact in performance. More advanced technologies with higher susceptibility to radiation and
aging, the use of larger memories, as well as the effect of other semiconductor components, such
as processors and GPUs, can only lead to much higher failure rates in the future.

1.2 The need for reliability in HPC

Reliability has been acknowledged as a major roadblock for HPC applications in current su-
percomputers and data centers, but it gains particular relevance with the advent of Exascale
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computing [18]. As shown before, faults have already the power to cause frequent issues in nowa-
days HPC systems despite existing means for fault tolerance [33]. In fact, the reliability of HPC
systems has recently gained particular attention [9].

The increasing power density in modern post-Dennard multicores raises chip temperature con-
cerns, specially due to on-chip peak temperatures and thermal gradients, leading to a wear-out of
silicon devices and putting at stake the long-tem reliability of chips, also defined as the Mean
Time To Failure (MTTF). Current power-saving techniques such as DVFS or core turn-off can
potentially lead to reduction of the system long-term reliability due to undesired collateral effects,
such as thermal cycling [28]. For instance, in metallic structures, when a thermal cycle amplitude
increases from 10C to 20C, lifetime reliability can decrease up to 16x [26]. Furthermore, given
that performance is highly affected by thermal aspects, the speed of specific structures may drop
by more than 35% when working at 110C instead of at 60C [53].

The above-mentioned concerns lead to the need of proposing both thermal modeling and ther-
mal optimization techniques tailored to current multicore chips. In particular, thermal modelling
and control within the RECIPE project will allow proactive (prediction-based) and reac-
tive (emergency-based) thermal management with the goal of reducing hot-spots and
maintaining temperature gradients within the 5-degree limit, enhancing lifetime reliability. To
achieve this goal, we need to combine expertise on thermal and reliability modelling, as well
as on reliability-aware workload management techniques. Most of these techniques will be in-
spired from the embedded systems world[96], being scaled and ported to the heterogeneous HPC
domain.

Corrected errors (CE) may have collateral effects in timing, thus decreasing performance and
QoS. Detected Unrecoverable Errors (DUE) impose the abnormal termination of applications
and potential system reboots, which may lead to increased operational costs and lower end
user satisfaction. Finally, Silent Data Corruption (SDC) can be even more challenging than
DUE since failures remain unnoticed, which may have catastrophic consequences depending on
the type of application where they occur, since HPC applications are nowadays widespread in
financial, engineering and scientific domains among others.

Applications also have shown high susceptibility to correctable errors in data centers depending
on the means set to log those errors [45]. In particular, owners of data centers need to log
information related to errors to diagnose systematic failures and replace faulty (or error prone)
components. However, as shown in [45], a fault rate of 4 errors per second is enough to increase
execution time of HPC applications by 2.5x and decrease the quality-of-service (QoS) of web-
based applications by 100x. Larger memories and advanced CMOS technologies can only worsen
this trend.

A number of operations are intrinsically resilient to faults due to their heuristic nature or due to
the characteristics of their output (e.g. media), so that upon a fault, the impact may be a slower
convergence towards the solution, or a degradation of the output that, although different from
the golden (i.e. error free) output, is semantically equivalent or sufficiently good. For instance,
a fault altering the temperature or humidity of a data point in a large matrix used for weather
forecasting, has negligible effects at the scale at which weather is forecast. In the particular case
of HPC applications, this effect has been studied for multiple solvers [15, 16, 19, 36]. Therefore,
although an increasing fault rate challenges correct execution of applications and/or their per-
formance, some faults, even if uncorrectable, may be naturally tolerated for some applications.
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Figure 1: Fundamental chain of dependability threats.

This has particular relevance in supercomputers where a single failure my impact the execution
of an application running for many hours on a large set of computing resources, thus making
full reexecution unaffordable and yielding ineffective rollback (e.g. checkpointing) if errors are
frequent. In this context, ignoring some faults may be a suitable solution.

Increased fault rates in future HPC systems will naturally lead to higher CE, DUE and SDC
rates, thus causing unacceptable impact in performance, QoS, and operational costs, apart from
unforeseeable consequences due to SDC. Therefore, error detection and correction techniques,
while still needed, will not be enough to deal with increased fault rates. In this context, solutions
to mitigate error rates will be needed to complement fault tolerance. In this document, we review
the state of the art on relevant fault models for HPC systems, fault prediction techniques, and
error detection and correction techniques for HPC systems.

2 Fault Taxonomy and fault models for HPC

The introduction of the generic term dependability was probably the first attempt to introduce
a global concept and terminology that subsumes the attributes of reliability, availability, safety,
maintainability, etc.[6]. The origin of this effort dates back to 1980, when a joint committee
on Fundamental Concepts and Terminology was formed by the Technical Committee on Fault-
Tolerant Computing of the IEEE Computer Society and the IFIP WG 10.4 [65]. Continued
intensive discussions led to the 1992 book Dependability: Basic Concepts and Terminology [66,
67]. In this work, we will follow their terminology. Specially significant is the distinction between
fault, error and faiuler. As defined in [6], the fundamental chain of dependability and security
threats is shown in Figure 1. Similarly, this work classifies faults from the the failure domain
viewpoint. In this case, we can distinguish between:

• Content failures. The content of the information delivered deviates from the golden (non-
faulty) execution.

• Timing failures. The time of arrival or the duration of the execution deviates from the
non-faulty execution.

These definitions can be specialized: 1) the content can be in numerical or nonnumerical sets
(e.g., alphabets, graphics, colors, sounds), and 2) a timing failure may be early or late, depending
on whether the service is delivered too early or too late. Failures when both information and
timing are incorrect fall into two classes:

• Halt failure, or simply halt, when the service is halted (the external state becomes constant,
i.e., system activity, if there is any, is no longer perceptible to the users); a special case
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Figure 2: Failure modes with respect to the failure domain viewpoint

of halt is silent failure, or simply silence, when no service at all is delivered at the service
interface (e.g., no messages are sent in a distributed system).

• Erratic failures otherwise, i.e., when a service is delivered (not halted), but is erratic (e.g.,
babbling).

Figure 2 summarizes the service failure modes with respect to the failure domain viewpoint.
Merging the previous classification, many recent works encapsulate both timing and/or content
errors in the following categories:

• Silent Data Corruption (SDC) No error is detected but data (application code and/or
application data) is corrupted and it may (or may not) lead to a change in timing.

• Detected Unrecoverable Error (DUE). An error is detected (in data and/or timing) but it
cannot be corrected.

2.1 Specific needs of HPC

Contrary to the traditional data centre world, where your business is likely to define the Tier level
your infrastructure should provide and your livelihood depends on the level of availability being
met at all times, HPC data centres require a more differentiated approach in order to maximise
scientific output and minimise infrastructure investment and operational costs. This requires
a detailed analysis of the services run and the customers each HPC center serves. Different
services or customer groups may require different levels of redundancy and reliability and a
trade-off needs to be made between the cost of providing higher availability against the cost of
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potential failures. For instance, traditional data centres rack density will vary between less than
1kW to around 6kW, HPC centres are dealing with much higher densities. It is not unusual
to see machines currently on the market consuming over 30kW per rack and these numbers
are expected to rise with the next generation of systems [112]. This increases the importance
of an efficient infrastructure and makes cooling much more complex. Most of the large HPC
centres across the world are government funded. For this reason, the costs for infrastructure and
operation will always have to compete with the investment costs in new HPC hardware, as this is
where the results come from. For this reason an HPC centre must minimize its infrastructure and
operational costs in order to be able to maximise its investments in its core business. Electricity
will be one of the largest cost contributors to the HPC centres budget. In order to control
this expense, it is critical to maximise the energy efficiency of the data centre. Reducing the
redundancy and reliability requirements on power and cooling can help improve energy efficiency
of the overall operation thus reducing operational costs as well as infrastructure investments.
Therefore providing adequate availability with an acceptable number of failures and interrupts
and maximum compute power is the key. As the HPC centres get larger in computation power
and storage space, the probability of errors increases proportionally to the number of parts. Early
detection and errors prevention is therefore becoming ever more important in order to keep the
HPC centre operational. This requires an HPC centre to deploy good monitoring, prevention
and recovery tools on their systems.

2.1.1 Influence of thermal ageing in reliability

Bias Temperature Instability (namely, BTI), is a degradation effect that changes the threshold
voltage of CMOS transistors. From a technological perspective, the BTI occurs when, under
a constant gate voltage, a stress in temperature (i.e., increasing temperature from ambient to
200C) results in charges being trapped in the transistor gate oxide and reduces the voltage
threshold of transistors [37]. These variations affect the switching characteristics of transistors
and, therefore, the maximum frequency under which the circuit can work [97].

The BTI effect consists to main components: (i) a non-permanent effect that dissappears once the
system is switched off, and (ii) a semi-permanent effect that increases the effect of the previous
one as the system ages. This partially-recoverable nature of BTI poses some interesting chal-
lenges from the power/thermal/performance management of circuits as the duration of sleeping
periods can impact BTI degradation and overall reliability of the system. Recent work shows the
importance of the impact of temperature transietns on BTI [35], whereas the previous observa-
tion imply that taking into account both application characteristics and transient temperature
on BTI modeling is of utmost importance. These two aspects, however, have been traditionally
neglected in previous work, which is generally focused on the development of circuit-level BTI
models.

2.1.2 Thermal modelling and reliability in heterogeneous reconfigurable systems

One of the most important challenges brought by current heterogeneous and reconfigurable sys-
tems is thermal modelling. In traditional MPSoCs, the knowledge of the chip floorplan allows to
identify at design time the location of the hot spots. However, this approach is no longer possible

http://www.recipe-project.eu D3.1 State of the Art on Predictive Reliability — 11

http://www.recipe-project.eu


in heterogeneous MPSoCs equipped with reconfigurable fabric, as the thermal distribution de-
pends on the accelerators implemented, which are unknown during the design phase. As a result,
the development of thermal and reliability-aware policies comes at the cost of shifting thermal
evaluation from the chip design phase to the run-time management. In this context, accurate,
fast and flexible thermal simulators, such as 3D-ICE [96], help understand the power dissipation
requirements, tailoring the cooling to the chip requirements to best utilize HPC infrastructures
while keeping cooling costs at a minimum and enabling run-time management. Similarly, re-
cent proposals point in the direction of mixed design-time/run-time models enabling proactive
thermal and reliability techniques for both conventional multicores and heterogeneous systems
[61].

2.1.3 Timing requirements in HPC

Focusing on timing requirements, in last years it is possible to notice an increasing trend of
emerging HPC applications that need strict timing requirements, that are typical of embedded
systems. In fact, soft real-time guarantees, intended as average QoS control, may be not suffi-
cient for certain classes of applications, such as natural disaster prediction algorithms, medical
software, and real-time video transcoding tools [39, 81].

2.2 Predominant fault sources in HPC

For classification, we will distribute fault sources in two categories. Internal faults are caused
within the system itself (and its components). External faults are caused by the interaction of
the system with the environment and/or surrounding systems.

Fault caused by external sources originate in: (1) noisy input signals (among those power is the
biggest concern) and external radiation; (2) operating ambient temperature (extreme temper-
ature operations in uncontrolled environments); and (3) particle strikes (alpha particles from
package decay, cosmic rays creating energetic neutrons and protons ; and thermal neutrons). In
an HPC system, noisy input signals (1) and, specially, power noise can be managed by extra
power regulators on the board. On the other side, ambient temperature (2) is controlled in the
long run. Yet, particular and localized temperature fluctuations can induce faults. Finally, parti-
cle strikes are the main external concern during operation. As pointed in section 1.1, fault rates
caused by particle strikes produce a significant reduction of uptime and MTTF.

Internal faults are caused by mismatches in the manufacturing process and/or the degradation
of the circuitry during its lifetime. Table 1 describes this sources of variability in the circuitry.
The sources are classified according to three criteria:

• Proximity: inter-die (between different dies), intra-die (within a given die), and device-to-
device (transistor to transistor).

• Spatial: affecting the dimensions or material density (time independent).

• Temporal: causing degradation when negative situation arises (time dependent)
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Table 1: Internal sources of variability, leading to circuit degradation and/or faults

Proximity Spatial
Temporal

Reversible Irreversible

Inter-Die Variation Parameter (Lg, Vth,
tox)

Operating temperature,
Activity factor

Hot-electron Effect, BTI
shifts

Intra-Die Variation Pattern Density/Layout
induced

On-Die Hotspots Hot-spot enhanced BTI

Device-to-Device Varia-
tion

Atomistic Dopant
Variation, Line-Edge
Roughness, Paramter
Standard Deviatons

SOI Body History, Self-
Heating

BTI induced Vth shift,
Time-Dependant Di-
electric Breakdown
(TDDB)

Internal faults are present in the chips present in HPC systems. As most spatial internal sources
follow an statistical distribution, manufacturers select the less affected chips for their high-end
products which sell at higher prices. Most HPC systems are built with these high-end products.
While the effects of these sources may be lower than in ordinary chips, as technology scales,
distributions widen, all chips now have extra features to ensure a functioning device (and a
high yield). Temporal sources envolve certain operation conditions which favor the appearance
of faults. In this sense (high) temperature triggers all temporal sources as well as parameter
variations may be exacerbated at high temperatures. Consequently, it is of great interest to
study this phenomena. Next sections, describe in more detail the effect of temperature on the
system reliability.

2.2.1 Thermal gradients and thermal cycling

As stated above, thermal stress influences system reliability, impacting the MTTF of the sys-
tem [68]. Thus, reducing the thermal hot spots is not enough to achieve adequate thermal
management for MPSoCs and increase MTTF. In this work, any rapid temperature change, in
either time or space, can be considered a thermal stress situation. In what follows, we will briefly
focus on the thermal issues due to temporal or spatial gradients and thermal cycling.

Temporal Temperature Gradient (TTG) can be defined as the rate of temperature changes over
time. For a given time, the rate of the temperature changes from one point to another indicates
the spatial temperature gradient (STG). Both STG and TTG pose a critical impact on the
system lifetime reliability [27]. However, it has to be noted that STG is mostly affected by
the power and thermal management techniques applied at the overall MPSoC system, i.e., the
allocatoin and specific setup of all cores in the system need to be taken into consideration. In
contrast, TTG is mostly affected by the core frequency and the workload running in each specific
core.

Finally, thermal cycling is the phenomena which takes place when the temperature rises up
(or drops down) and goes back to the initial value (which can be defined as a thermal cy-
cle) frequently [110]. Thermal cycling can be counted by Dowining simple rainflow-counting
algorithms[34]. MTTF reduction due to thermal cycling occurs due to the mismatch on the ex-
pansion coefficient between the layers of the chip, which results in thermomechanical stresses.
Thermal cycling (TC) tends to reduce the whole system MTTF as the number of cycles or am-
plitudes increases. Large amplitudes are normally induced due to improper task scheduling on a
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single core. Number of thermal cycles increases especially by the power management techniques
which frequently turn cores on and off [27].

3 Fault-Prediction techniques for HPC

In the context of RECIPE, we will explore fault prediction mechanisms and analytical methods
of estimating application’s robustness. Predicting faults will give us the time to react in order to
recover from the fault. Estimating application’s robustness based on fault statistics and effective
usage of resources will minimize application crashes and help determining optimal resource
utilization. This information will be exposed to the software orchestrator to drive efficiently the
different recovery mechanisms and the utilization of the system to maximize resources efficiency.

In our analysis, we follow the taxonomy introduced in [89], but only keeping those categories
that apply to the problem at hand. For the sake of completeness, apart from the very few works
targeting HPC systems, we include relevant works that can be applied to the problem at hand.

3.1 Techniques based on failure tracking

These techniques build upon the idea that past failures can be used to predict future failures.
Therefore, one of the main limitations of this type of techniques is that failures must have
occurred in order to be able to predict future ones. Hence, while those techniques can be ap-
propriate for failures due to transient and intermittent faults, they lack the ability to prevent
permanent faults. In particular, the latter relates to the fact that, once a failure produced due
to a permanent fault has manifested, any corrective action may help preventing further failures
due to such fault, but cannot do anything to mitigate the fault since it is already permanent.

Some works – not specific for HPC systems – have analyzed statistical relationships and prob-
ability distributions of the time-between-failures [82]. These techniques may also be used in
the context of HPC systems since their statistical nature makes them agnostic of the source of
the failure data. Such an approach is, indeed, investigated in [13], where failure prediction is
performed based on the probabilistic analysis of job failures in the HPC system.

Other works, instead of looking for probability distributions, build upon dependencies and cor-
relations to predict failures based on the occurrence of other failures [100, 71, 40]. In particular,
[100] notes that failures can occur either close in time or close in space. In general, close in
time failures may relate to a single fault (e.g. a permanent fault or uncorrected transient fault)
that leads to multiple failures, whereas close in space failures may relate to a broader set of
conditions, such as a single fault that manifests in several components using the faulty (shared)
component, or as multiple faults whose occurrence is not independent (e.g. due to high aging of
an overused set of resources). Such ideas have been used by [71] to predict failures of the IBM’s
BlueGene/L system. In particular, authors build upon event logs with reliability, availability
and serviceability (RAS) information to analyze whether some patterns exist in terms of time
occurrence or space occurrence of failures. Then, upon the detection of a failure, if a positive
space or time correlation has been found for that fault, related faults are assumed to occur in
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the near future either in the same component (time dependence) or in neighbor components
(space dependence). These concepts have also been applied to distributed systems, thus being
of relevance for HPC systems [40].

3.2 Techniques based on symptom monitoring

Symptom-based prediction builds upon system state information to predict whether a failure
may occur in the future. Differently to failure tracking techniques, those based on symptom
monitoring do not need any failure to occur in the system to predict the occurrence of future
failures. Hence, they do not suffer from the same limitation as those other techniques where
failures need to occur to predict future failures, which plays against preventing permanent faults
to occur. Symptom monitoring may allow predicting future failures due to future permanent
faults, thus taking corrective actions before those faults actually occur, hence avoiding those
faults. On the other hand, since correlation between symptoms and future failures may be
weaker than the correlation between multiple failures, symptom monitoring techniques may
have higher chances of raising false positives (i.e. predicting a failure that would not occur) and
false negatives (i.e. failing to predict a future failure).

Most techniques do not target failures due to (electronics-related) faults but, instead, software
concerns due to memory leaks, system performance degradation and resource utilization that may
lead to functional failures and decreased performance. For instance, function approximation has
been used to estimate when performance of some servers may degrade due to having to serve large
amounts of requests [4]. Machine learning has also been a popular approach to predict failures
based on symptom monitoring. Machine learning was already used successfully to predict failures
of mechanical components in the early 90’s [102]. However, it has been used in a plethora of works
targeting server-type and telecommunications systems [49, 40, 89]. In this context, Hoffmann et
al. [50] showed that the selection of appropriate input variables for machine learning is the most
relevant concern to maximize the accuracy of the approach.

A different approach within sympton monitoring consists of training a classifier with data related
to systems prone to failure and systems that are not, using some variables of the system. Then,
during operation, those variables are monitored and assessed by the classifier algorithm which,
based on the current state of the system, decides whether it matches better a failure-prone or
a failure-free condition. This concept has been applied, either with discrete variables [46], with
continuous variables [78] and with support vector machines [103, 41], to disk and server failure
prediction, thus being of relevance for HPC systems, since the techniques are not restricted to
specific components. In fact, it has been shown that, since some of these techniques provide
non-binary answers (failure vs non-failure) but, instead, continuous values, outputs of these
techniques can be used to monitor slowly evolving system states that get closer to failure [10].
Similar approaches have also been used for fault classification across transient or permanent
faults [83]. While this is not a failure prediction scheme per se, fault classification can be used to
feed failure prediction since transient faults can be eliminated, whereas permanent ones remain
and may likely lead to failures in the future.

While symptom monitoring needs training data, other approaches build upon system models
determining the range of values expected for multiple variables during failure-free operation.
Hence, no training phase is needed in general for these approaches. During operation, the set of
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variables used for failure prediction are assessed against the system model to determine whether
values are within failure-free ranges. If this is not the case, a failure is predicted. This approach
has been applied to hard disk failure prediction [54, 78] using models that use data during
failure-free operation to predict failures. Similar implementations based on matrix representa-
tion of the variables monitored and residual deviations with respect to failure-free behavior could
also be used for failure prediction in HPC systems [92]. Alternative models have been used either
based on statistical distributions of the variables assessed (e.g. mean and variance) to predict
failures [108] or defining grammars of failure-free sequences of values [22]. These models can be
generally applied to failure prediction in HPC systems by monitoring appropriate variables of
the system. Some other models build in component utilization and interaction within a system
to compare the set of components used against the different sets used during failure-free oper-
ation [21, 62]. At processor level, some authors show that specific variables (e.g. mispredicted
branches, cache misses) vary noticeably upon the occurrence of a fault, so they can be used to
determine whether a fault has occurred [79]. While authors do not use this technique for failure
prediction, it could be used together with other techniques that, for instance, relate error fre-
quency with failure chances, as discussed later. Those approaches, although not used explicitly
for HPC systems, could also be used.

A number of techniques for failure prediction build upon past history of monitored variables to
predict their future values and hence, whether those values will fall into a range corresponding
to a failure. Such prediction can be performed with different means:

• Regression: a function is adjusted to the data and future values used for prediction.

• Residual computation: a residual value of the measurements is computed and used for
prediction.

• Time series prediction: both stationary and non-stationary time series are used to predict
future values.

• Signal processing techniques: noise is removed from measurements for a better prediction.

In general, these techniques have not been used for failure prediction due to (electronics) faults,
but their different incarnations can be applied to the problem at hand. For instance, regression-
based methods have been used to predict time-to-exhaustion of a given resource [43]. A similar
approach could be applied to failure prediction if appropriate variables to monitor are identified.
Residuals for fractality and time series of Hölder exponents have also been used to predict
resource exhaustion [90]. Time series have been used to predict whether values will violate a
threshold [47].

3.3 Techniques based on error reports

These techniques build upon error events (i.e. error logs) to predict future failures. Differently to
previous categories, these techniques neither need actual failures to have occurred, nor monitor
specific variables periodically. Instead, error reports are monitored and decisions taken on an
event-related basis.

Some authors use genetic algorithms to identify the rules to predict failures based on error
reports [109], whereas others build upon identifying specific sequences of errors occurring before
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failures to anticipate those failures [105]. Fault trees and Markov Bayesian Networks have also
been suggested as potential methods on which to build failure prediction solutions [89].

As for the case of occurred failures, some techniques aim at identifying dependencies and correla-
tions between errors, either in time or in space, to predict failures. In particular, an observation
common across multiple works is that the number of errors per time unit increases before a
failure [69]. This observation has been corroborated in several works. For instance, some authors
show that in the IBM BlueGene/L supercomputer, on average, a job experiencing two non-fatal
events has much higher chances to experience a failure (above 5x) than if it only experiences
one [71]. Increased error frequency has been the basis for several failure prediction methods.
Some authors rely on changes in the distribution of error types to predict failures [91], whereas
others study the error frequency and, if such frequency increases, an imminent failure is pre-
dicted [80, 63]. Error frequency has also been used, not only to predict failures, but to classify
faults and failures as either transient or permanent [72, 1].

Beyond error frequency, some works also consider whether some patterns exist in the sequence
of errors prior to a failure. In particular, error types and times are exploited for pattern iden-
tification [104, 72, 88]. In the case of patterns, a specific technique has been applied to HPC
systems, building upon techniques from the signal processing domain [42]. Such technique is
proven efficient to schedule checkpoints in failure-prone locations and to migrate tasks away
from those nodes.

In this context, some authors investigate how to monitor error logs in distributed HPC systems
and deliver information appropriately to software layers to build failure prediction mechanisms
on top [84].

3.4 Timing analysis in HPC

Dealing with application timing constraints in HPC scenario is extremely challenging, due to
the unpredictability of hardware and software layers, usually composed of Commercial-Off-The-
Shelf (COTS) components that make the tasks timing analysis hard or even impossible [29].
Timing cons taints are usually considered in soft real-time sense in HPC. Several research works
and tools to deal with the resource management problem have been developed in last years and
they are thoroughly reviewed in literature surveys [56] [93]. Much less works are available on
strict timing constraints for HPC. In fact, even if hard real-time has been widely studied in last
decades for parallel architectures [31], the applicability of such techniques in HPC environment
is limited, due to the previously discussed unpredictability challenges. Despite some recent works
on HPC timing predictability exist [32, 81], this problem is still open, several challenges have to
be tackled and the current solutions are definitely immature.

3.5 Recapitulation

As shown, there is a plethora of techniques that can be used for failure prediction. Most of them
have not been applied to the particular case of HPC systems or do not target (electronics) fault-
related failures. However, the number of possibilities to develop failure prediction techniques for
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HPC systems is huge, but appropriate techniques need to be devised and proven effective, which
is part of the work of RECIPE.

4 Fault detection and recovery in HPC systems

4.1 Fundamental hardware monitoring

Reliability, availability and serviceability (RAS) is a term used in computer systems that includes
the design and implementation of appropriate means to ensure system reliability, high availability
and serviceability. While other related concepts have been often considered in computer systems,
such as security and maintainability, the term RAS is often used (and abused) to refer to the
original three concepts, as well as to some others.

The term RAS was originally used by International Business Machines (IBM) as to refer to the
robustness of their mainframe computers [51]. Nowadays, not only IBM provides support for
RAS, but virtually all hardware vendors in the HPC domain provide support for it, including
Intel [58], AMD [76] and ARM [5]. RAS supports includes a number of interdependent features.
The most common ones are as follows:

• The initial Machine Check Architecture capabilities. Some tests are performed to validate
that hardware operates normally and without errors. For instance, in the case of memories,
usual March tests are passed to validate that no permanent fault is in place [14]. Those
tests consist of writing specific data patterns intended to trigger different fault types.

• Processor instruction error detection. E.g. residue codes for data operated, and valid opcode
checking are examples of error detection means in this category.

• Parity or ECC errors in caches, system memory, and memory bus have been shown effec-
tive to capture faults leading to bitflips, such as those caused by radiation, temperature
disturbances, aging and crosstalk.

• I/O: Cyclic redundancy check (CRC) checksums for data transmission/retry and data
storage, with a nature similar to that of parity and ECC.

• Storage: Journaling file systems for file repair after crashes.

• Checksums on both data and metadata.

• Background scrubbing. This solution is often employed to ensure that single-event upsets
(SEUs) are detected and corrected timely before multiple SEUs accumulate, thus becoming
unrecoverable.

• Power/cooling: violation of operating ranges of clock frequency, temperature, voltage, vi-
bration. E.g. processors are usually halted on a temperature overrun to protect the physical
integrity of the chip.

RAS support includes not only specific hardware support, but also Operating System (OS)
support to monitor errors (even if recovered by hardware means), and configure the system
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and trigger recovery actions if needed. For instance, Linux-based machines include the mce-log

daemon to track RAS-related information by interacting periodically with the corresponding
RAS hardware support. Similarly, the Windows Hardware Error Architecture (WHEA) performs
a similar work for Windows machines. In both cases, the OS can trigger protective and/or
remedial actions when necessary based on the predictive failure analysis (PFA) performed.

Computers designed with higher levels of RAS have many features that protect data integrity and
help them stay available for long periods without failure. This relates to the fact that individual
processors may be designed with a specific (very low) Failure in Time (FIT) rate1. For instance,
a processor may have 200 FIT, so that, on average, a failure is expected every 5,000,000 hours
(i.e. every 571 years). However, if we set up 100,000 such processors working cooperatively in
a supercomputer or data center, then we can expect a failure in any of the processors every 50
hours (i.e. every 2 days), which may be unacceptable for applications lasting several days. Note
that in those large systems, other components such as interconnects, memories, etc. will also
contribute to the overall FIT rate of the system.

4.2 Aplication level fault detection and recovery

Checkpointing Checkpoints have been often used as a means for efficient fault recovery.
Checkpoints consist of a snapshot of the execution that can be used to resume the execution
from that point without having to restart execution from the beginning. In general, a checkpoint
must reflect the architectural state of the application at a given time instant, thus including its
architectural registers and memory state. However, checkpoints introduce some non-negligible
overheads of terms of both, timing and storage, since saving the state requires freezing execution
and storing potentially large amounts of data, which may be time consuming, and may require
large storage space to hold the full checkpoint. Therefore, what to checkpoint and when are key
concerns.

Some libraries offer capabilities for checkpoint and rolling back execution upon a fault detection,
such as [75] and [8]. Since there is a tradeoff between how often checkpointing must occur and
how often faults occur, some works aim at identifying the optimal checkpoint rate [12]. As a way
to decrease checkpoint cost, some works opt for using incremental checkpoints, thus storing only
the data changed since the last checkpoint and performing full checkpoints seldom [44]. Other
algorithm-specific works (i.e. for a family of solvers) build on adapting the application so that
the amount of data needed to recover to restart execution upon a fault is significantly lowered
[24].

Algebraic-based detection and recovery On a different strand, some works build upon
the algebraic properties of the algorithms being executed to extend them for fault recovery. In
particular, solutions build upon mathematical relationships, adding software redundancy and/or
data interpolation to recover from faults without needing to store checkpoints and, instead, using
the data of fault-free threads to recover the data for the faulty one [23, 64, 2, 3].

Algebraic properties have also been used for error detection for algorithms such as CG, Fourier
transform, QR and LU factorizations, and matrix multiplication among others [24, 70, 52, 30, 48].

1The FIT rate is defined as the number of failures expected per 109 hours of operation.
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Alternatively, other authors build on machine learning to detect SDCs [99]. In particular, authors
rely on the end user declaring some state variables for monitoring. The fault detector is trained
for the specific program and later, during operation, is able to detect whether the values for
those variables are abnormal and hence, a SDC may have occurred.

n-Modular Redundancy One of the most used techniques for error detection and recovery
consists of using n-modular redundancy, where n refers to the number of redundant copies of
the system executed [73]. This scheme is based on the redundant execution of the program and
the comparison of the outputs across the redundant instances to detect errors, based on the
assumption that a single fault will not lead to errors in multiple instances or, at least, if this
was the case, the error would be different in the faulty instances. This would guarantee error
detection every time outputs are compared. Correction, instead, may be built in different ways,
among which we name the following:

• Majority voting recovery. On an error, if n ≥ 3 and the error probability is low enough,
it is almost guaranteed that only up to 1 instance can be faulty. Hence, there will be
a higher number of (identical) correct outputs than the number of faulty outputs. By
comparing outputs and voting, the correct output can be determined. Then, the state
of the faulty instance can be replaced by the state of a fault-free one before resuming
execution. However, this solution is only valid as long as the number of fault-free outputs
is strictly higher than n/2. For instance, if n = 2 such a recovery mechanism is not possible.

• Checkpoint rollback. On an error detection, execution can be rolled back to the last fault-
free checkpoint for all instances, regardless of the value of n and the number of faulty
instances.

• Restart. An even simpler mechanism to recover consists of simply restarting the faulty
task. This solution can be regarded as appropriate as long as tasks are short enough so
that their reexecution does not involve too many redundant computations.

Usual implementations of n-modular redundancy, include Triple Modular Redundancy (TMR)
and Dual Modular Redundancy (DMR). For instance, the HP NonStop architecture [11] builds
upon fully redundant boards whose outputs are compared at the Sphere of Replication (SoR) of
the full board, thus detecting errors only when requests are sent out of the board. Other SoR
schemes exist comparing the outputs of redundant computations at pipeline stage level, which
allows quick detection and recovery by simply reexecuting not-yet committed faulty instruc-
tions [94].

An important consideration in n-modular redundant systems is the independence of redundant
instances so that a single fault does not lead multiple instances to the same erroneous output,
since this would defeat the purpose of redundancy. This concern has been considered in the
safety-critical domain (e.g. in the automotive domain [59]), and faults of interest include voltage
droops, crosstalk, etc. The usual solution consists of introducing some form of diversity across
redundant instances, which can be attained by different means:

• Using independent devices. E.g. using independent boards with independent power sup-
plies.

• Diverse hardware implementations. E.g. using two different processors, for instance an Intel
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and an AMD processor.

• Diverse software implementations. E.g. different implementations of the algorithm or dif-
ferent compilations of the same algorithm.

• Time diversity. E.g. executing redundantly identical binaries or identical hardware, but
with some time slack in between so that a fault does not affect the same instructions in
redundant instances.

How to schedule redundant tasks in parallel systems has been an important concern [107] as
well as whether to enable only partial redundancy [57], so that it is used only for those nodes
or computations more vulnerable to faults. Finally, n-modular redundancy has also been im-
plemented by software means by making programs perform all computations redundandly. Such
concept is known as n-version programming [7]. Particular redundant MPI implementations have
been evaluated with success Detection and correction of silent data corruption for large-scale
high-performance computing [38].

Data representation Error detection mechanisms, such as n-modular redundancy among
others, rely on the comparison of results against those of redundant computations, or against
some form of reference value or data check. In theory, these techniques are effective. However,
their practical implementation on actual computers with limited data representation may pose
some issues. In particular, processors implement finite-precision numbers (e.g. 32-bit or 64-bit)
that naturally fail to cover the spectrum of any number field, such as Integer or Real num-
bers. Normally, this is not a big concern for integer numbers since all numbers in a range (e.g.
[−263, 263 − 1]) can be represented and hence, as long as the program does not need numbers
beyond this range, the actual implementation is accurate with respect to the abstract algorithm.
However, in the case of real numbers, limited representation leads to limited precision, which im-
poses some form of rounding for computations. Hence, rounding can easily bring deviations with
respect to the expected (theoretical) result and discrepancies across redundant computations if
operations can occur in different order. In particular, the latter concern relates to the fact that
the Associative Property does not hold for real numbers with limited precision. In other words,
if limited precision is used for real numbers, in general we have that:

(A + B) + C 6= A + (B + C)

Therefore, either it is guaranteed that the same computations are performed strictly in the same
order across redundant executions (or in an appropriate order for comparison against a golden
reference), or some degree of tolerance is allowed in the comparison so that small discrepancies
potentially caused by rounding effects do not alter the result of the comparison. Note that the
latter may allow some error tolerance if errors do not cause deviations larger than those already
introduced by rounding effects.

Non-determinism At a different abstraction level, we find that some algorithms may be
intrinsically non-deterministic, thus challenging error detection since a single correct result may
not exist. For instance, algorithms based on pseudo-random search and/or optimization, such as
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those based on genetic algorithms or simulated annealing, may take different choices based on
both, different (random) initial values and different (random) choices during algorithm execution.
For instance, a genetic algorithm may pair individuals randomly, choose points for crossover of
individuals randomly and apply mutation of some genes randomly. Simply modifying the random
seed of the pseudo-random number generator (PRNG) or performing different actions calling
the PRNG in different order, may lead to different random choices and thus, different results.
Hence, determining whether a partial or final result is fault-free is particularly challenging for
non-deterministic algorithms regardless of whether n-modular redundancy is used or not.

4.3 System-level solutions

4.3.1 Task migration

Task migration is a recovery action that can be used as alternative or as a support to Check-
point/Restore (C/R). It consists of moving the code of a running task among processing re-
sources, as well as moving the allocated memory pages among different memory nodes.

The operating system or the resource managers can operate both in reactive and proactive mode.
In the former case, the task migration would consist of changing the set of resources allocated
to the given task, before relaunching it or performing a rollback. In the latter instead, the task
migration would be performed whenever a prediction of fault has been provided. In such a case,
the OS or the resource manager would check if the affected hardware is currently used to run
some tasks, and if so, change the resource allocation preventing such tasks from experiencing
the expected faults.

Task migration can be exploited in the Restore phase of a C/R protocol, thus resuming the
execution of the target application or taks on different set of computational resources.

Now, depending on the scope under which task migration is performed, in HPC we can distin-
guish among:

• Inter-node task migration

• Intra-node task migration

The Inter-node migration consists of moving the tasks (or the entire application) from one
computational node to another. If the application has been implemented by using the Message
Passing Interface (MPI) programming model, this may trypically require the movement of MPI
processes (Process migration) among nodes. Reghenzani at al. proposed an extension of the
OpenMPI runtime to perform this in a transparent manner [87].

In large clusters, process migration is therefore useful to add reliability and to balance the
resource allocation across the cluster [55]. The migration request can be managed by a centralized
entity (e.g. by a gloabl resource manager) or by the single node (a local resource manager), that
for instance may require processes migration in case of overload or predicted fault, as we said. In
this regard, whatever is the entity in charge of triggering the migration, we must take in account
the considerable cost due to the interruption, the migration of code and data on another node
and the restore procedure.
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In 1996, Stellner proposed the first migration mechanism implemented in MPI: the Cocheck
environment [98]. This environment was built on top the MPI framework and not inside (actually
small modifications to MPI framework were applied). The global consistent state is achieved by
imposing no message in-flight over the network. Then, checkpoint or a migration of a subset of
processes is performed according to what is required.

Process migration can be used also to support classical C/R approaches, as presented by Wang
et al. [106]. Their work introduced a process-level migration that allows us to potentially achieve
a higher utilization of the system resources, with respect to virtualization based approaches.
The basic idea was to try to minimize the number of C/R by using a proactive method: health
monitoring of the computing node state and migration of all the running processes on a differ-
ent node, in case of imminent fault prediction. Their solution actually reduces the number of
performed C/R with respect to periodical checkpoint based techniques. However this requires
to synchronize all the running processes into a global consistent state, before stopping and mi-
grating them to a different node. This can represent an issue in case of imminent faults that
require short time to act. The approach was implemented in LAM/MPI (predecessor of Open
MPI) using the BLCR tool.

For Intra-node migration, things are much simpler since the resources are typically under the
control of a single instance of OS. Moreover, the overhead are much lower with respect to
the inter-node case. In the scope of the single node, a reliability-oriented resource management
policy can exploit the isolation mechanisms provided by the operating system (e.g., Linux control
groups or containers), to implement this recovery action.

4.3.2 Heterogeneous task migration

A special mention should be reserved to task migration in a context of heterogeneous hardware,
like RECIPE. When we talk about Process migration, typically we are assuming that we are
operating on a homogeneous clusters. For several reasons, migration on heterogeneous platform
is much more complex [55].

In 1998, Smith et al. presented the Tui System [95], an experimental framework to perform
process migration between heterogeneous machines. The article was well received by the scientific
community and it shows the several issues affecting the heterogeneous migration. The main
problem in fact is given by the conversion between different ISA, that may require different
instructions, register numbers, register size, etc. For this reason, the compiler is compulsory
involved, because it must produce a code that matches one-to-one between different architecture.
As a consequence, in order to simplify the problem, the Tui System introduced strong constraints
regarding the two architectures involved, that leads to a migration much more quasi-homogeneous
than heterogeneous.

Other few solutions were proposed, e.g. Cabello et al. [17] proposed an Open MPI middleware to
provide migration mechanism in heterogeneous systems. In this case the process is not directly
migrated but a new process is started in the destination machine. Unfortunately, this middleware
provides dedicated MPI calls, violating the standard and requiring substantial rewrite of all MPI
applications.

In RECIPE, we have to deal with heterogenity at node level, where other than having CPUs, we
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must deal with GPUs and custom processing resources on FPGAs. This is an emerging scenario,
for which the project gives us the chance of investigating novel solutions. In this regard, one
of our goals is to integrate the possibility of migrating tasks among heterogeneous processors,
in the software management stack (resource managers and programming libraries). This, trying
to minimize the involvement of the application developer in the management of the migration
actions.

4.3.3 Power and thermal aware resource management

Power and thermal management of MPSoCs is a topic that is quite rich in previous literature. As
power consumption started to become one of the most significant challenges of multicore chips,
researchers focused on controlling peak temperature indirectly by means of power management
policies [85]. However, although power management approaches alleviate to some extent the
thermal hot spots across the chip, these techniques are insufficient to deal with hot spots, and
therefore require specific thermal management policies at both design [20] and run time [77].

Regarding thermal stress, which is an important factor that affects multicore chips’ reliability,
power and thermal management exhibit contradictory goals between peak temperature reduc-
tion techniques and thermal stress reduction approaches. Even though several works consider
thermal stress, they rarely provide a comprehensive solution to cope with all thermal stress
mechanisms along with power constraints. For instance, although in some works the tradeoffs
between temporal and spatial thermal gradient mitigation schemes are investigated [25], power
management and thermal cycling are not considered. In addition, other works [111] propose task
scheduling methods for reducing temporal temperature gradients but disregard thermal cycling
and spatial gradient.

Holistic policies, such as [60], are able to manage efficiently all thermal reliability aspects are
paving the way to collaborative hardware (DVFS) software (workload allocation and application
configuration) techniques to enhance the reliability of the system while providing the adequate
power/performance/QoS.

5 RECIPE contributions

Exascale systems will suffer from higher fault-rates. This projection, coupled with the fact that it
is not possible to recover from all faults - once they happen asks for effective ways of maximizing
applications survivability and consequently making the system more efficient and predictable.

Given the reliability needs shown in section1.2 and the preciding state-of-the-art, RECIPE will
explore fault prediction mechanisms and analytical methods of estimating applications robust-
ness. Predicting faults will give us the time to react in order to recover from the fault. We will
use statistical and machine learning techniques (eg., support vector machines) to predict faults
and leverage application and runtime layers. Estimating applications robustness based on fault
statistics and effective usage of resources will minimize application crashes and help determining
optimal resource utilization. This information will be exposed to both the local and the global
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resource managers to drive efficiently the different recovery mechanisms (including checkpoint-
ing), the proactive reliability policies, and the utilization of the system to maximize resources
efficiency.

The co-running applications have a significant impact on the reliability and efficiency of the
system. Since they are executed at the same time, they compete for the shared resources. Un-
derstanding how the applications affect each other might help to schedule them more efficiently.
We will propose a mathematical model of applications executed in parallel that will be used
to schedule them on the available resources in order to increase the reliability and efficiency of
the system. Data from the statistical and machine learning techniques described earlier will be
used to feed the model. The model will be valid regardless of the types of processes - they may
be applications executed in the operating system, virtual machines or containers in a virtual
environment.

The key contributions of RECIPE will be:

1. Developing a combined reliability and timing modelling approach aimed at quantify the
impact of failures in the system with the aim of achieving a predictive system behaviour
accounting for the interferences of the applications co-hosted in the system and despite
the presence of faults.

2. Reliability modelling will be extended by a thermal modeling infrastructure to enable
the transient modeling of heterogeneous systems under thermal stress to provide a more
accurate MTTF of chips.

3. Develop a reliability concious runtime manager, first of its class, that will consider holisti-
cally performance, energy and reliability when taking scheduling decisions.

6 Summary

In this report, we review the main reliability concerns for future HPC systems, and the state-
of-the-art predictive solutions for fault mitigation as well as error detection and correction tech-
niques for HPC systems. As presented, some valuable solutions exist mainly for error detection
and correction, whereas predictive reliability and QoS is a less mature area requiring further
investigation and elaboration of practical solutions.

Finally, we point out the roadmap of the RECIPE project and how it will contribute to advance
the state-of-the-art.
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