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1 Introduction

At the architectural level, RECIPE targets the support for deeply heterogeneous systems, with
different mixes of accelerators ranging from Graphics Processing Units (GPUs) to Field Pro-
grammable Gate Array (FPGA) devices. During the first phase of the project, the partners
carried out a careful analysis of the current technological trends, which led to identification of
key choices at the architectural level. The basic choices involve server-grade CPUs as well as
high-end GPU and FPGA cards targeted at the datacenter/HPC market. Concerning manycore
technologies, the consortium discarded the choice of discontinued products, like Intel Phi, which
was originally mentioned in the RECIPE proposal, and those targeting non-HPC segments, e.g.
the Mellanox Bluefield manycore system. On the other hand, as planned, the project will in-
tensively rely on the FPGA-based infrastructure provided by the MANGO H2020 FETHPC
project [5], offering a large-scale multi-FPGA setting that perfectly fits the purposes of the
RECIPE project. The spectrum of architectures covered by RECIPE is summarized in Figure 1,
showing heterogeneous types of RECIPE nodes within the whole RECIPE system.

In line with the plans described in the RECIPE Grant Agreement, the project is interested in
the full integration of the compute resources with high-performance fabric (InfiniBand) functions
and related system-wide communication mechanisms, extended to FPGA-based accelerators. For
that, the MANGO system will play a particularly important role, as it will provide the starting
point for implementing high-performance communication interfaces and related drivers/primi-
tives exposed to the user applications.

This deliverable, in particular, describes the outcome of Task 4.1 Node-level support for disag-
gregated FPGA resources (Task Leader: CERICT; Participants: UPV, POLIMI). The task dealt
with the integration of FPGA acceleration in RECIPE and the support for networking/commu-
nication in the cluster of FPGA devices imported from MANGO for integration of reconfigurable
hardware acceleration in RECIPE. The deliverable first summarizes the scope of FPGA-based
heterogeneous acceleration in RECIPE. In particular, Section 2 identifies four different FPGA de-
sign styles, as seen from the RECIPE application partners’ perspective, and their corresponding
implications in terms of performance and programmability. Section 3 then presents the commu-
nication infrastructure available for connecting the MANGO host system and the FPGA devices,
as adapted from the MANGO project. Section 4 provides the details of the node-level commu-

Figure 1: Heterogeneous nodes within the RECIPE system
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nication support that will be deployed in RECIPE, while Section 5 describes the infrastructure
involving system-level communication.

2 FPGA acceleration in RECIPE

As highlighted in the previous section and shown in Figure 1, FPGAs will be made available in
the RECIPE architecture both as commercial off-the-shelf acceleration cards and as dedicated
compute nodes provided by MANGO. This will complement homogeneous and standard GPU
compute resources, also part of the system. Although FPGAs will not be the only type of
heterogeneous acceleration considered in RECIPE, the partners will investigate their potential
role as specialized acceleration platforms suitable for some classes of applications and use-case
requirements targeted by the project. Because the integration of FPGA acceleration in user
applications is particularly challenging, the consortium first evaluated and classified the practical
approaches available for its use in HPC settings. The outcome of this evaluation –summarized
in this section– is particularly relevant for the RECIPE application partners as it will guide
them through the process of assessing the potential use and profitability of the FPGA-based
acceleration nodes. In general, the potential parallelism inherent in large-scale applications can
fall in one –or multiple– of the following classes: Data parallelism, where the same sequence
of operations is performed on different pieces of data in an independent fashion; Thread-level
parallelism, where independent and unrelated flows of execution can proceed simultaneously,
each requiring its own control flow; Instruction-level parallelism, where instructions of the same
sequential flow of execution turn out to be independent of each other and can potentially be
executed in parallel; Pipeline parallelism where subsequent sequences of operations, e.g. different
iterations of the same loop, can be partially overlapped in time by properly handling the pipeline
schedule, including the case where dependencies exist between distinct operations in consecutive
iterations. Data parallelism and pipeline parallelism are especially relevant for heterogeneous
acceleration based on reconfigurable hardware, as FPGAs provide dense arrays of fine-grain
resources, often specialized for arithmetic computation, that can be customized in an application-
driven fashion with the highest degree of flexibility.

For the development of its heterogeneous abstraction layer, RECIPE will explore four different
styles of use for FPGA acceleration, depending on the specific use case requirements:

• full-custom HDL implementation, suitable for performance-critical, relatively simple and
regular kernels;

• optimized library-based design, for well-supported kernels to be implemented in hardware,
e.g. linear algebra;

• pure-hardware HLS-based design, for non-standard kernels or control-intensive parts of the
application that are not performance-critical;

• software-programmed accelerators, particularly the nu+ vector core and associated LLVM-
based compiler imported from MANGO, which is suitable for control-intensive parts of
the software application that do not match the restrictions of HLS and/or data-intensive
kernels benefitting from custom vector-style approaches.
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The above design styles will not be mutually exclusive in RECIPE, as different styles can be
used for different layers of the kernels being accelerated on the FPGA platform. The main ob-
jective in the project is to provide the RECIPE application partners with the full spectrum
of implementation choices and guide them through the process of designing and integrating
hardware-accelerated kernels. These will be encapsulated under a software application program-
ming interface, relying on the communication infrastructure specified in this deliverable and
deployed during the project, for experimenting with various mixes of accelerators, i.e. by re-
placing selected CPU- or GPU-implemented kernels, identified by the application partners, with
their FPGA counterparts, as described in Deliverable 1.2.

2.1 Full-custom design

Full-custom design refers to low-level hardware design, typically performed at the register-
transfer level (RTL) by means of a hardware description language (HDL), for example VHDL,
Verilog, or System Verilog. This is the traditional approach to FPGA development as seen from
the hardware designer’s perspective. A general design practice, allowing at least some degree
of abstraction compared to pure hardware-level design, relies on the identification of data stor-
age and data processing flows within the application, determining the so-called datapath in the
hardware structure, and the separate definition of the logic of control steering the datapath,
normally implemented as a finite state machine (FSM) or as a micro-programmed controller.
Typical HDLs normally support such design patterns, e.g. well defined coding styles used to
describe synthesizable FSMs. Along with modular and hierarchical design, such coding practices
allow the hardware developer to contain the complexity of the design process. Nevertheless, be-
cause of the very low level of abstraction it offers, full-custom design is in most cases out of reach
for ordinary HPC programmers, so this design style is not meant to be directly exposed to the
end user. However, the project will also support the integration of custom components within
its FPGA-based platform for a number of reasons:

• for simple or moderately complex functions that are particularly performance-critical, ex-
tending the range of accelerators with a purpose made component might in general be
worth the effort;

• for a few particular applications relying on special low-level building blocks, e.g. crypto-
graphic functions, pattern matching operations, etc., the full potential of FPGA accelera-
tion might only be exploited by a custom design;

• special features available on modern FPGAs are difficult to abstract away and their ex-
ploitation, again, might require lower-level design.

In general, for the investigation carried out by the project, full-custom design can also serve an-
other purpose, i.e. provide indications about the upperbounds to the performance improvements
that can be achieved by heterogeneous FPGA-based acceleration, as well as a measure of the
gap incurred by the other design styles in terms of performance.
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2.2 HLS-based design

High-level synthesis (HLS) is today a consolidated approach to the design of FPGA-based compo-
nents, relying on tools that are able to translate portions of high-level software code, e.g. written
in C/C++ language, into an RTL implementation. HLS essentially provides a compilation in-
frastructure, resembling normal compilers in many respects, which captures a representation of
the high-level functionality and maps it to custom hardware structures. That way, HLS provides
a number of potential advantages for high-level programmers:

• it relies on familiar high-level languages for functional specification (although in practice
many low-level hardware-related aspects are ultimately exposed to the programmer);

• it potentially allows the recognition of recurrent patterns in the code, e.g. related to loop
structures, possibly enabling automated transformations/optimizations;

• it allows the development and functional verification of accelerator components in software
environments through hardware/software co-simulation and debug;

• depending on the tool, it often provides automated support for the integration of the
HLS-generated components in the surrounding infrastructure (on- and off-chip memory,
communication interfaces and buses, etc.).

Ultimately, by raising the level of abstraction, HLS can potentially make FPGA programming
accessible to end users as well as increase productivity for hardware designers. Current practices
suggest that, at least for high-level code exhibiting known patterns, the resulting performance
can get close to hand-coded RTL, with some increase in terms of hardware resources (in the
order of 10 − 15% in the best case), although this might not be the case for general code.

As mentioned above, an important aspect of HLS is that it takes care of recurrent optimizations
that can be applied to known patterns in the software code, e.g. those enabling potential pipeline
parallelism. This particularly applies to loop optimization. In that respect, the two typical op-
timization techniques that are supported by HLS tools include loop unrolling, which essentially
replicates hardware resources to execute multiple loop iterations in a physically parallel fash-
ion, and loop pipelining, which overlaps multiple iterations in time, executing new iterations
as soon as dependencies are resolved. Additionally, HLS allows the customization of the mem-
ory infrastructure supporting the hardware components, particularly on-chip memory, as well
as the automated generation of interfaces to off-chip memory. This is particularly important as
parallelized code translated to hardware may easily hit data access bandwidth limitations as
the main performance bottleneck. Consequently, HLS tools support advanced on-chip memory
implementation and access optimizations, such as port size customization and static coalescing,
port sharing, application-driven multi-banking, replication or dedicated allocation of memory
modules, double-pumping relying on faster memory clocks, etc. An additional opportunity for
optimization exploited by HLS is the use of arbitrary precision data types, particularly for
fixed-point variables as well as for floating point numbers. The latter also enable a number
of further optimization strategies that might dramatically impact the resource-efficiency (and
hence performance and power consumption) of the resulting hardware components, for exam-
ple removing rounding and conversion between sequences of floating-point operations, balancing
trees of operations for reduced delays, etc. Note that this kind of optimizations usually violates
the standard-compliant notion of correctness in floating-point operations, so HLS tools are sup-
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posed to provide the user with different options and possibly some support to the evaluation
of the performance-accuracy trade-offs. In addition to (semi-) automated optimizations, typical
commercial HLS design environments provide support for performance analysis and identifica-
tion of bottlenecks, e.g. limiting factors in loop unrolling or pipelining, memory organization,
etc. guiding the end user through the process of code adaptation and optimization.

In typical flows, HLS-generated components become entries in the Intellectual Property (IP) cat-
alog made available by the design environment, and can be instantiated in higher-level FPGA-
implemented systems. The reference model for such systems might either take a data flow ap-
proach, where hardware components essentially have unidirectional data ports and are directly
connected with each other, and a system-based approach, e.g. a bus-based system where HLS-
generated components act like memory-mapped devices and use memory-based mechanisms to
exchange data with the other components, which might also include programmable soft cores. In
some cases, the two approaches can also be combined, with some of the system components being
directly interconnected to match the high-level data flow in the original program to the underly-
ing hardware structure. This mapping, however, is very unlikely to be performed automatically
by the HLS tool and typically requires programmer’s awareness.

The two reference HLS environments that will be considered by RECIPE are provided by the
two leading FPGA manufacturers, Xilinx and Intel FPGA. They both provide their own HLS
environment, offering all the essential features that are described above plus possibly specific
functions supporting integration and verification. For example, Intel FPGA’s HLS environment
supports x86 emulation, with a compilation tool (i++) featuring command line compatibility
with g++ as well as standard debug tools, and integrated cosimulation supporting testbenches
with concurrent x86 execution and RTL simulation.

An important development in the area of HLS is the support for OpenCL, a programming model
originally introduced as a unified, nonproprietary model for GPU programming. In fact, both
Xilinx and Intel FPGA support OpenCL-based design tools and, indeed, these are presented as a
different, more abstract design entry solution compared to direct use of HLS (although HLS is still
required behind the scenes). While C/C++ programs used with HLS require specific pragmas to
control low-level aspects, e.g. memory interface, pipelining, etc, OpenCL kernels do not strictly
require additional annotations, unless the developer is seeking improved optimization. That
however makes an OpenCL even less performance-friendly than HLS, making its use uncertain
in cases where the full potential of FPGAs is to be evaluated and compared to alternative
acceleration platforms. Furthermore, while in principle OpenCL is meant to provide a shared
model across heterogeneous architectures, ranging from GPUs to FPGAs, the actual execution
models that are exploited in the two cases remain different. This divergence essentially boils down
to the difference between vector-like parallelism and pipeline parallelism which are exploited in
the two cases, plus a number of features that are specifically aimed for FPGA design, e.g.
heterogeneous memory support, channels, etc. In conclusion, while OpenCL for GPUs and for
HLS-based FPGA design can in principle ensure functional portability across architectures, it
is very likely that, for practical purposes, the code needs to be re-written when moving from
one type of architecture to the other. RECIPE will consider the use of OpenCL along with HLS
for at least one selected kernel of interest for the project, which will be used to evaluate the
performance gaps and comparisons against optimized hand-written RTL code.
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2.3 Library-based design

HLS-based flows essentially assume that the user application is built from scratch, possibly
relying on low-level library components, e.g. custom-configured floating point units. By library-
based design we refer here to a design style where coarse functionalities, e.g. kernels included
in typical HPC applications, are pre-designed and then possibly coupled to other hardware
components in the FPGA accelerator. Such functionalities will then be directly exposed to the
software HPC applications. Library-based design of course facilitates design reuse and reduces
verification cycles, effort, and risk. Importantly, in a HPC setting, it provides a realistic path
towards the integration of FPGA acceleration in complex software applications, where it is very
unlikely that HPC programmers can develop their own low-level compute kernels from scratch,
no matter what the level of abstraction for FPGA design is. Currently, catalogs of high-level
FPGA-based functions cover a number of different application domains1: Compression, Data
Analytics, Financial Computing, Genomics, Machine Learning, Mathematics, Security, Devel-
opment tools, Video and Image Processing, Networking. Specific examples of libraries include:
Intel FPGA Deep Learning (DL) Acceleration Suite [3], Accelize’s compression, cryptographic,
and transcoding libraries [1], Xilinx BLAS libraries [8], Accelogic’s LAPACKrc and compression
libraries [2], LabView FPGA Module VIs and functions [4]. The importance of coarse-grained
FPGA library components is growing in importance, because of the role of FPGA acceleration
in cloud settings (consider for example the case of F1 instances in the Amazon Web Services).

An interesting aspect in library-based design relates to the circuit-level FPGA design cycle.
Normally, the FPGA implementation cycle includes a fine-grained tile-based placement-and-
routing phase, usually requiring a long searching time, in the order of hours or even days for
large-scale design. To reduce compilation time, hard macros consisting of synthesized, placed,
and routed circuits can be included in the design, or hierarchical/modular floorplanning can
be used. Often, pre-designed library components are used in the context of dynamic partial
reconfiguration (DPR), requiring the separation of dynamic logic, reconfigured during operation,
and static logic, which is kept unchanged during operation of the FPGA device. Re-used modules
with pre-placement and routing can be stored in a library for later reuse. In some cases, PDR
is used for enabling remote access and configuration of FPGA resources in cloud-like settings.
A few aspects of scientific relevance in this context include efficient approaches for fast modular
placement of fine- and coarse-grained FPGA resources, support for reconfigurable modules with
multiple contexts, as well as the use of accurate pre-placement information to better direct the
global placement. Such developments are however out of scope for RECIPE. The project will
consider the integration of high-level library-based FPGA kernels which are statically included in
the design, possibly in a pre-routed form. The control and support for data access made available
to the library component will be provided by the surrounding FPGA-based communication
infrastructure developed by RECIPE, possibly relying on alternative design styles, e.g. HLS or
a C/C++ programmable soft core.

1see for example: https://www.xilinx.com/products/design-tools/acceleration-zone.html
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2.4 Software programmable vector soft-core

RECIPE will explore an additional path towards the exploitation of heterogeneous accelera-
tors, relying on the configurable GPU-like soft-core, called nu+, developed by the MANGO
H2020-FETHPC project to support both the MANGO Emulation perspective and the Com-
pute perspective. In the first scenario, the RTL core implemented on FPGA was used for the
exploration of advanced architecture features deviating from current general-purpose heteroge-
neous architectures. In the Compute perspective, which is of interest for RECIPE, the nu+
core provides an effective solution as an FPGA overlay, offering HPC developers an approach
to build tailored processing elements on reconfigurable hardware, reaching higher resource ef-
ficiency through customization, yet avoiding the development of a dedicated accelerator from
scratch through the support for familiar programming toolchains.

The GPU-like model adopted by the nu+ soft-core exposes useful features for improved re-
source efficiency in that it provides an abundance of threads executing in a SIMD-like fashion,
while reducing control overheads and hiding possibly long operation latencies. Accelerators based
on nu+ can effectively exploit multithreading, SIMD/SIMT operation, and low-overhead con-
trol flow constructs, in addition to a range of advanced architecture customization capabilities,
in order to enable a very high-level utilization of the underlying resources. RECIPE will im-
port from MANGO a baseline implementation (shown in Figure 2), ensuring a set of minimum
features including: support for hardware multithreading; data-level parallelism through large-
size vector/SIMD/SIMT support; multiprocessor organization allowing non-SIMT execution;
lightweight control flow constructs exposed to the programmer, such as predication and mech-
anisms for optimizing diverging threads and improving datapath utilization; hybrid memory
hierarchy providing both coherent caches and non-coherent scratch-pad memory; on-tile per-
formance counters, e.g. for utilization, stalls, instruction counters; facilities for fault/interrupt
handling and debug.

Building on the baseline architecture imported from MANGO, RECIPE will explore techniques
for customizing the GPU-like core to match the characteristics of the applications being accel-
erated, effectively exploiting:

• non-standard floating-point precision values as well as dedicated functions like fused oper-
ators;

• configurable mixes of instructions, e.g. integer, floating-point, special functions, memory
operations, control-related instructions;

• design solutions and tradeoffs for critical components, such as a customizable Register File,
along with solutions for building an effective memory hierarchy available to the GPU-like
processor;

• new techniques for lightweight control flow and management of diverging threads;

• effective support for software programming models.

Regarding the last bullet above, an important aspect is that nu+ comes with a full LLVM-based
compilation toolchain and low-level software libraries. On top of the basic platform, an OpenCL
implementation targeted at nu+ can be built to expose a similar level of abstraction as cur-
rent accelerators, particularly GPUs, without incurring the limitations of the FPGA-oriented
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Figure 2: Baseline architecture of the GPU-like accelerator

model used by OpenCL FPGA design environments. Another important aspect is that the basic
core in MANGO has been extended to a NoC-based multi-core setting, offering deep config-
uration capability at the system level. In particular, that means that the NoC-based system
can be assembled by composing heterogeneous tiles, part of which can host customized accel-
erators (possibly developed through a full-custom, HLS-based, or library-based flow), the only
requirement being that the specialized acceleration component be equipped with the nu+ NoC
interface. As seen from the outside, the system will expose a single interface to the FPGA-based
interconnection infrastructure, as described in the following sections, while offering to the ac-
celerator designer the largest spectrum of possibilities in terms of hardware design styles and
software programmability.

2.5 Interplay of different design styles

As implied by the above description of accelerator design styles pursued by RECIPE, the FPGA
acceleration platform will provide a very large degree of flexibility while exploring the setups
that best match the application requirements. The final setting is likely to rely on a hybrid
design style, where performance-critical portions of the applications are accelerated by means of
a library-based or a full-custom approach, while the control-intensive higher-level parts of the
accelerated kernels, as well as the infrastructure-level communication functionality is developed
through more abstract approaches, e.g. relying on HLS and/or C/C++ programmable soft cores.
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Figure 3: FPGA design styles and their role in the RECIPE platform

The vector processing capability of the programmable nu+ soft core can also be considered for
acceleration of performance critical operations. On top of the hardware acceleration infrastruc-
ture, the low-level support for communication and interfacing with the CPU-based host system
will support the definition of a software API to be exposes to HPC developers, in such a way that
the actual design styles and details of the hardware architecture are made mostly transparent.
The overall scenario is summarized in Figure 3. Section 4.5 provides the specific details of the
interfacing between hardware components within a single FPGA-implemented accelerator, while
Sections 3-5 describe the interfacing of the whole FPGA platform to the MANGO host as well
as the RECIPE system.

3 Communication between the Mango host and the
FPGA platform

At the heterogeneous node level, a high-speed communication interface is required between
the host system and the FPGA devices. The main means of communication will be based on
PCI express. In particular, PCI express will be the default communication interface between
the server and FPGA device. For single-FPGA accelerators, direct PCIe connectivity will be
provided. In the RECIPE prototype a number of PCIe direct lanes will be available in the
server to allow direct connectivity to FPGA devices. However, due to physical constraints, the
interconnection of all FPGA devices cannot be carried out directly with these interfaces. This
requires implementing additional interconnection capabilities within the FPGA devices. We use
the physical PCIe interfaces to build different communication architectures and topologies to
suit the different acceleration needs.
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Figure 4: PCIe router and FPGA interconnection

To allow building different communication architectures we added to the FPGA devices a net-
work router acting as the PCIe entry point router. This router allows implementing several
receiving and injection ports to read from/write into the interface. The router is attached to the
physical interface of PCIe via two unidirectional 64-bit ports. These ports are used to receive/in-
ject traffic from/to the server and distribute it to the appropriate FPGA devices. Figure 4 shows
the PCIe entry point router and how it is interconnected with the server and FPGA devices
in the RECIPE prototype. Network interfaces (NIs) are implemented in the FPGA devices to
receive and send data from/to the PCIe to the rest of FPGA devices.

Additionally, we added the possibility of using DMAs as an efficient transfer mechanism between
memories and FPGA accelerators. However, the traffic between the server and the acceleration
system must be properly designed in order not to become a bottleneck. Care must be taken in its
design in order to keep the premises set within the project for QoS guarantees. We also support
the utilization of virtual networks to ensure bandwidth guarantees.

4 Node-level communication

The node-level communication support that is provided in the context of RECIPE is based
on the specific needs of the different FPGA acceleration design styles described in Section 2,
here referred to as acceleration modes. To cover the intra-node needs we envision two scenarios:
(1) Intra FPGA communication and (2) FPGA-to-FPGA communication. Note that these two
communication scenarios are not required in every acceleration mode. For instance, full-custom
RTL designs and HLS-based designs might not require intra-FPGA communication in situations
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where an isolated acceleration component is fitted to a whole FPGA device. However, for these
acceleration modes we may require support for FPGA to FGPA communication if the resulting
acceleration implementation does not fit in a single FPGA device. In this latter case, specific
means for partitioning the algorithm are required. On the contrary, acceleration modes using
arrays of smaller acceleration units require having efficient intra-FPGA communication means
to fetch and write data from/to the different memory controllers.

Node-level communications rely on the utilization of the network infrastructure developed in
H2020 MANGO. Hereafter, we describe the main components used in this network and how
they relate to each other.

Tile-based architecture. In order to simplify the communication infrastructure required for
the FPGA nodes, we have opted for a tile-based design where accelerators and memory modules
are mapped to. In this approach, the resulting architecture reverts to a homogeneous set of tiles
laid out in a 2D mesh configuration. Each tile offers the same functionality for communication
but within each tile a different accelerator and memory configuration may be placed. This means
that heterogeneity is possible at the tile level. Figure 5 shows the main building blocks of the
tile.

Mango Router. The router that is used to perform node-level communications implements up
to five identical bidirectional interfaces. Each of those interfaces may connect to another router
located on a neighbouring tile or to the local NI. The router architecture is especially suited
to implement a 2D mesh topology. The router implements connectivity towards North, East,
West, and South. Each interface implements two unidirectional ports with the same signals. The
router includes buffers and a stall-and-go link level flow control to avoid overflowing buffers at
the input ports of the router. The router also allows the possibility of including one or several
virtual networks (VNs) and virtual channels (VCs). Programmable weighted arbitration is also
provided in this router to improve performance guarantees for applications with strong real-time
requirements.

Network Interface. The network interface (NI) module acts as the interface between the
accelerator unit and the network and/or the rest of the components. The network interface
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allows both local and remote traffic. Traffic generated by the accelerator and targeting nonlocal
entities (for instance, a memory located on another tile) is encapsulated in a message, pipelined
through the NI module, and injected into the router. Local traffic accessing local configuration
register or a memory module in the same tile is also encapsulated and transferred using the
network interfaces.

Memory Controller (MC). While the deployed network allows exchanging data between
acceleration units, we expect communications from accelerators to off-chip memory to involve a
significant fraction of the overall communication. We incorporated memory controllers attached
to specific locations in the network to allow accessing the different memory modules provided in
the FPGA boards. Memory controllers deal with heterogeneous memory interfaces. In the current
version of the RECIPE prototype we have DDR3 and DDR4 memory modules but we may also
incorporate high-bandwidth memory (HBM) interfaces once they become available in the market.
Using HBM allows effective data movement from the host to the FPGA memories. Another
important aspect of the memory controller is its placement in the FPGA cluster. The location of
the memory controller can affect significantly the performance for latency sensitive applications
so finding the appropriate location is crucial to ensure an effective utilization of resources. Note
that in the multi-FPGA cluster, memory modules are shared between the different FPGA devices
and only one MC can have access to the memory module at a time.

4.1 Intra-FPGA communication

For the intra-FPGA communication infrastructure we rely on the network infrastructure de-
veloped in MANGO. This network infrastructure is based on a 2D mesh network on-chip that
implements one or several physical and virtual networks using wormhole routers to interconnect
the different tiles of the system. In RECIPE we use tiles to wrap acceleration units in order
to allow accelerators to communicate with each other and with memory when the adopted ac-
celeration design style demands such functionality. The architecture of the tiles and the NoC
infrastructure that is deployed within the FPGA to accommodate more than one acceleration
unit in a single FPGA device are depicted in Figure 6.

Note that, as mentioned before, intra-FPGA communication is only required for acceleration
modes including more than one acceleration unit in the FPGA.

4.2 FPGA-to-FPGA communication

Having the ability to exchange data across different FPGA units is required to support accel-
eration modes in which accelerators span several FGPA devices. To this end, we rely on the
same network-on-chip architecture defined before. However, when dealing with FPGA-to-FPGA
communication the most important limitation comes from the reduced number of pins available
on the FPGA devices. To alleviate this problem, we incorporated pin multiplexing techniques
to allow maximizing the communication throughput across different FPGA devices. Pin multi-
plexing can be implemented relying on specific IP cores offered by FPGA providers and requires
careful design of the timing aspects of designs implemented in the FPGAs to achieve high-speed
communications.
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Figure 6: Logical view of an array of accelerators included in one or more FPGA devices using
the tile-based approach.

4.3 Efficient Memory Transfers

To transfer data from the memory on the FPGA acceleration nodes to the memory on the
Server, DMA engines are used. Data is routed to specific Input/Output devices and then sent
to the Host. These transfers are especially useful to transfer the output data generated by the
accelerators to the Host. In the other direction, from the memory on the Server to the memory on
the FPGA system, data is routed following the same approach. Data is read from Server memory
and directly sent to the communication interface, and once it gets to the acceleration system,
data is routed through the same data channels as the local DMA transfers. These transfers are
useful to send the data to be processed by the accelerators.

The DMA can transfer data from the local memory to other memories within the HPC system,
or to the application memory space. This flow of data goes through the NI attached to the
memory controller. After analyzing the message format, the NI forwards the data through the
network to reach another tile, or to a local IO device on a specific data channel. At the network
level, a one-to-one association exists between the virtual networks, the DMA channels, and the
data channels.

The DMA can also be programmed to transfer data directly to accelerators (the UNIT). This
is especially important for acceleration modes that can take as input large amounts of data for
their processing. This is the case, for instance of acceleration modes using full-custom RTL and
software programmable vector soft cores.

http://www.recipe-project.eu Report on Reconfigurable Accelerator Infrastructure — 19

http://www.recipe-project.eu


ACCELERATOR
INTERFACE

ACCELERATOR
INTERFACE

TLBTLB

TILE
CONFIGURATION

REGISTERS

TILE
CONFIGURATION

REGISTERS

conf

Virt_addr[31:0]

Phy_addr[31:0]

Dst_tile[9:0]

to_tilereg
to_mem

Tilereg_reg[5:0]

Figure 7: Address translation mechanism.

4.4 Address Translation

One important aspect of the system is how memory is addressed by the accelerators. In RECIPE
we support different acceleration schemes, and each of them may need to access memory in a
specific manner (e.g locally or remotely, enforcing coherence or not). In addition, the memory
will be shared also by the server as the applications will interoperate with their kernels running
on the accelerators and will share memory. The approach we follow for memory management in
RECIPE is to offer accelerators the possibility to have their own virtual address space (bounded
to 4GB memory space) and the resource manager takes control of the physical memory available
on the cluster. Specific registers within the tile have been implemented to map accelerator’s
virtual addresses into the final physical memory resources. For acceleration modes where this
address virtualization scheme is required, a simple address translation module (a.k.a TLB) has
been implemented in the FPGA. The address translation module allows the resource manager
to map virtual addresses into physical ones. This in practice allows a proper communication of
the accelerator with memory resources.

The TLB receives a virtual address from the acceleration unit. With this address, the TLB inter-
nally computes the physical address and provides back the data for the access to the acceleration
module. For regular memory accesses, the accelerator interface contains the physical address to
access and the location (tile) where the target memory is located. A regular memory access is
identified by setting a specific signal.

Besides this, the FPGA network architecture inherited from MANGO enables accelerators to syn-
chronize with the host system or with other accelerators by letting accelerators access memory-
mapped registers. To do this, the TLB can be configured to map those registers to specific virtual
memory addresses of the accelerator. Thus, from the standpoint of the accelerator, a read or
write operation to a synchronization resource will be translated into a regular read or write
operation to a virtual address. However, the virtual address, when translated, will be redirected
to the specific register. Figure 7 illustrates the interconnection of the TLB and the acceleration
units.
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4.5 Accelerator interfacing

This subsection deals with low-level hardware component interfaces, i.e. those adopted within
the boundary of the heterogeneous Acceleration Unit as called in the schemes shown in the
previous sections. Such interfaces are relevant just for the hardware accelerator designer. The
Mango tile containing the accelerator itself will in turn be connected to the rest of the system
through the communication system described in the previous sections.

Low-level interfaces will in turn work at three different levels:

• Basic hardware components, possibly developed through HLS or custom design, will be
equipped with standard-compliant interfaces. Depending on the FPGA technology of choice,
this might be one of two standard interconnects, i.e. AXI or Avalon, although the broader
adoption of the former makes AXI the preferred option. Two different variants of the in-
terconnect will be considered, suitable for two design approaches: streaming interfaces,
made of simple, point-to-point, unidirectional ports (in the simplest instance, just data
plus ready/valid signals) that are suitable for situations where the high-level program
data flow is directly mapped to a corresponding hardware structure, and memory mapped
interfaces (address-based read/write interfaces), allowing more complex interaction pat-
terns based on shared memory access. Note that both AXI and Avalon provide stream
and memory-mapped versions of the protocol. The standard compliance will improve the
interoperability of low-level components, including the case of modules imported from ex-
isting IP catalogs, and will be possibly exploited with different design styles. This choice
will mostly benefit the low-level hardware accelerator designer. Regarding the specific case
of memory interfaces, only local on-chip memory will be directly supported at this level,
including the cases where HLS is used (i.e., coding patterns inferring off-chip memory will
not be supported), because access to off-chip memory will be mediated by the external
interfaces described in the previous sections.

• Cache-coherent custom accelerators can be integrated in the nu+ many-core infrastructure
as heterogeneous cores, as depicted in Figure 8. Importantly, the whole system will appear
as a single MANGO tile, or Acceleration Unit. This allows the tight coupling of com-
plex accelerator components, e.g. library-based optimized implementations of some kernel
function, and the programmable soft core, enabling C/C++ programming of the whole
infrastructure, the possible exploitation of the vector instructions in the soft core, as well
as a direct and transparent (shared memory based) interaction with optimized acceleration
hardware.

• The whole FPGA-side acceleration system will be interfaced with the outside through
the accelerator interface adapted from MANGO, described in the previous sections. The
hardware interface is readily available on the nu+ manycore system, as it has already been
integrated in the MANGO infrastructure, avoiding any additional design overheads for the
developer. For cases where the nu+ soft core is not instantiated and direct use of dedicated
accelerators is planned, those accelerators need to be equipped with an interface wrapper,
providing an AXI or Avalon interface on the internal side, which will be made available
by the RECIPE technology partners.
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Figure 8: A MANGO tile, corresponding to a single Acceleration Unit, including a heterogeneous
nu+ manycore system

5 System-level communication

System level communications in the RECIPE prototype correspond to those carried out between
the different nodes in the HPC system. The main communications involving different nodes will
correspond to data transfers between the nodes of applications which require to communicate,
and will be mainly carried out by both point-to-point and collective communication primitives
implemented in the message-passing application programmer interface (MPI). In this section
we elaborate on the capabilities of the InfiniBand network substrate to allow the efficient im-
plementation of the aforementioned MPI primitives and on the potential extensions required to
add the support for node-to-remote accelerator communications as required to implement the
concept of disaggregated acceleration.

5.1 InfiniBand network capabilities

For the implementation of the concept of disaggregation we will rely on the ultra-low latency
and high throughput offered by InfiniBand networks. Unlike Ethernet, in InfiniBand networks
packets are never lost ensuring that a higher level of quality of service can be offered to the
different applications.

The main quality of service (QoS) capabilities of InfiniBand rely on the link layer architecture [7].
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The link layer encompasses packet layout, point-to-point link operations, and switching within
a local subnet. QoS is supported by InfiniBand through Virtual Lanes (VLs) a.k.a virtual chan-
nels in interconnection networks’ terminology. VLs provide separate logical communication links
which share a single physical lane. Each link can support up to 15 VLs (plus one that is reserved
for management). Service levels (SLs) can be defined to match a certain QoS level. Each link
can have a different VL, and SL can be used to provide each link with a given priority. The way
this can be configure in InfiniBand is through the utilization of SL-to-VL mapping tables.

In addition to the definition of service levels, performance guarantees of real-time HPC ap-
plications can be improved by leveraging the weighted arbitration implemented by Mellanox
InfiniBand switches. In these switches, arbitration between traffic of different VLs is performed
by a two-priority-level weighted round robin arbiter. To make weighted arbitration effective the
arbiter has to be programmed with a sequence of (VL, weight) pairs and one should define the
maximum number of credits that can be processed before low priority ones are served.

5.2 Disaggregated FPGA acceleration

In RECIPE we take advantage of the low latency and high-bandwidth capabilities provided
by InfiniBand to effectively implement disaggregated acceleration support. Disaggregated ac-
celerators can be accessed from any server in the HPC infrastructure as if they were virtually
attached to the server where the application is being executed. The idea is to allow one applica-
tion to potentially utilize all acceleration units available in the HPC facility accessing them in a
transparent way through the interconnection network.

The way the offloading process (involving the data transfers from the host to the accelerators)
is carried out depends on the particular programming model employed by the application de-
velopers. For instance, specific MPI primitives can be implemented to allow send and receive
information using modified MPI Send and MPI Recv primitives to a computing element in
the FPGA. The way the FPGA handles such MPI primitives is implementation dependent.
For instance, one possibility is to centralize and handle message exchanges at the server side
which on the one hand will reduce the specific support for MPI in the FPGA device, at the
expense of increasing the latency of communications. The other alternative will consist in im-
plementing a subset of the MPI standard either with a software library for tasks implemented
on programmable soft/embedded cores or by directly implementing a hardware Message Passing
Engine in the FPGA.

As an alternative to the implementation of the concept of disaggregation using MPI, we can
consider in the context of RECIPE the utilization of OpenCL-based disaggregation by adapting
the OpenCL runtime to have the desired functionality. This option does not seem to be a solution
as clean as the ones based on MPI, but might fit better the requirements of FPGA accelerated
applications. There exist already implementations of such OpenCL functionality, like SnuCL [6].

The decision of which particular model for disaggregated acceleration will be employed in
RECIPE is not yet taken and will depend on how the different applications match the dif-
ferent options and what is the performance that one or another approach is expected to achieve
in the context of the specific RECIPE use-cases.
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