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1 Introduction

As the interest for High Performance Computing (HPC) is growing, the deployment of such
computing infrastructures is facing issues and challenges growing as well. Given the focus of the
H2020 RECIPE project [10] and, more specifically, the goal of the current deliverable, we limit
our discussion to three key aspects, for which an accurate design and implementation of the
software stack is crucial.

First, new large scale application domains are emerging, for which such a class of computing
sytems is required. For example, machine and deep learning, as well as stochastic models based
applications, need a huge amount of memory and computational nodes to run Big Data sized
algorithms. Moreover, HPC is gaining interest also for automotive, forecasting and medical
applications, whose specifications typically come with critical real-time constraints.

Second, such application domains are increasing the demand of processing capabilities, raising
up the power consumption of super-computing centres, and thus their contribution to the overall
world-wide CO2 emissions [11]. Part of the solution to this problem comes from the adoption of
more energy-efficient hardware units, like GPUs and many-core accelerators, for which specific
programming models have been developed. However, this also makes it more challenging to
find the optimal solutions in terms of task scheduling and resource allocation, from both the
performance and the power perspective [9].

Third, in the last decade, the Mean-Time-Between-Failure (MTBF) in a typical HPC infras-
tructure has significantly dropped, with systems experiencing the occurrence of more than one
hardware failure per day [19]. Depending on the type of failure or fault, the workload in execution
may be affected in terms of performance degradation or errors in the output results carried out.
These events could be not acceptable for certain classes of applications, like the aforementioned
time-constrained ones.

As we already explained in D2.1, to address all the aforementioned challenges, a careful design of
the system from the hardware perspective is not enough. The necessity of effective management
software layers is growing with the complexity of the systems themselves. Furthermore, all the
components of the software stack must cooperate, in order to build an energy-efficient [2] and
fault-tolerant HPC infrastructure [15]: from the hardware abstraction layer to the upper-layer
frameworks (resource managers, hypervisors, container orchestrators,. . . ), including operating
systems and programming models.

This complexity motivates the need of building a hierarchical resource management infrastruc-
ture, where each part can focus on a specific subdomain of the overall management problem. In
this deliverable, we focus on the prototype of the local manager, which is the stack component
in charge of solving the problem of allocating resources to the workload running on each single
node of the HPC infrastructure. This means that an instance of the local resource manger will
be deployed on each of the computational nodes.

The cooperation among hierarchical levels is then made possible by the implementation of suit-
able interfaces, between local resource manager and application programming model, other than
local and global resource manager. In the former case, we could profile the applications execu-
tion at runtime, infer how they are using the computing resources and optionally redefine the
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assignment. In the latter, the local resource manager would act as data provider for the global
resource manager. This goes in the direction of enabling the implementing proactive policies at
all the levels.

In the current deliverable, we summarize the work carried out in Task T2.2. More in detail, we
provide a description of the local resource manager prototype (the BarbequeRTRM), focusing
on the design and implementation effort in the time frame between months 9 and 18. The goal
of this work was the introduction the hardware reliability and time-constraints management
capabilities, at local resource manager level. Morever, we will briefly mention how we expect to
interact with the global resource manager, with the modelling frameworks of Work Package 3
and the low-level functionalities provided by the hardware abstraction layer, as Work Package 4
outcome.

1.1 Overview and document structure

This deliverable is focused on the implementation of the local resource manager, which is the
software stack component in charge of managing the resource assignment at level of single HPC
node.

In deliverable D2.1, we introduced the overall status of the entire. In this document instead, we
will put in evidence the recent developments aiming at making the resource manager reliability-
aware and capable of implementing allocation policies that would take into account timing
constraints.

In Section 2, we recall the local resource manager structure, the interfaces for providing data to
the global resource manager and some new extensions specifically thought for the HPC domain.

In Section 3, we carefully describe the design of the new components the local resource manager
will rely on, in order to implement reliability-aware resource management strategies. Further
discussion regarding specific policy implementation are postponed to the next deliverable (D2.5),
once suitable experiments have been performed.

In Section 4, we provide a picture of the stategy with aim at putting in place for addressing the
time constraints management on HPC infrastructures, starting from the theoretical fundations
of our approach and the moving to the role of the local resource manager.

Finally, in Section 5 we recap the status of the prototype and briefly discuss about the next
steps.
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2 The BarbequeRTRM

The Local Resource Manager represents the component of the RECIPE software stack in charge
of controlling the assignment of resources, in the scope of a single node of a distributed HPC
system.

In RECIPE, each computing node features a heterogeneous set of resources, for which ad-hoc
resource management strategies are needed. We refer to this as Heterogeneous Node (HN). The
resource manager must therefore consider the heterogeneous capabilities of the processing units,
in terms of timing predictability and performance, as well as the power-thermal profile. Moreover,
the complexity of the target HPC node is also given by the interconnect infrastructure and the
non-uniform memory accesses. In this regard, the Hardware Abstraction Layer can play a key
role, by providing interfaces to gather HW-level profiling data about interconnect bandwidth
occupancy and memory accesses. These would be exploited by the resource manager runtime
policies in order to optimize performance, timing predictability and energy consumption in a
more effective manner.

In this project, the basis of the development of the local resource manager is the Barbeque
Runtime Resource Manager (BarbequeRTRM) 1. This resource manager was born and developed
thanks to previous EU-funded projects (FP7 2PARMA, HARPA and H2020 MANGO) [4].

The RECIPE Project requirements and objectives are driving the development of the Barbe-
queRTRM towards the introduction of new components devoted to:

• Address the increasing hardware-level reliability issues by implementing reactive and proac-
tive countermeasures.

• Provide time-predictability guarantees to manage the execution of time-constrained appli-
cations, coming from the latest HPC application domains.

In this section, we recall the BarbequeRTRM features already introduced in deliverable D2.1,
and describe this part of the software stack is being developed to target the aforementioned
objectives.

2.1 Architecture

In this section, we describe the main components of the resource management framework de-
ployed at single node level: the BarbequeRTRM. Figure 1 shows the overall architecture of the
framework and the interfaces provided to manage applications and integrate hardware platforms
supports.

The topmost layer in the figure shows theApplication Runtime Library (RTLib) and the sup-
ported languages (C, C++, OpenCL and Python). As we explained in deliverable D2.1, the li-
brary implements what we called Adaptive Execution Model. On top of this, we built the MANGO
programming model, to enable a straighforwad programming approach to heterogeneous target
plaforms.

1https://bosp.dei.polimi.it/doku.php
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Figure 1: Overview of the BarbequeRTRM with the integration of MANGO specific components.

Other than defining a programming model, the RTLib covers several aspects of the interaction
between application and run-time resource manager:

• To hide the low-level details of the communication channel and the custom protocol

• To provide an application programming interface for run-time manageable applications
(Adaptive Execution Model) API

• To provide an interface for specifying application performance requirements and other
profiling data (Recipe).

For the sake of portability, the BarbequeRTRM runs as a user-space daemon, occupying only a
few resources of the host-side resources (CPUs).

The daemon and the applications communicate through a Remote Procedure Call (RPC) based
protocol. Data are mainly exchanged by using named pipes; a general one for the messages coming
from the application to the resource manager, plus one pipe per application for application
management purposes. A further communication channel, based on shared memory, has been
introduced to enable an efficient transfer of complex data structures, like for example the task-
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graph representations of the applications.

According to the figure, the run-time resource manager itself is the third layer of the framework.
We reported only the most important modules of its internal structure, to avoid a useless excess
of details. The Resource Manager module is the component in charge of launching all the
resource manager services. The Application Proxy is the endpoint of the communication with
the applications. The Application Manager is the collector of the information regarding all the
managed applications (priority, requirements, status). For example, as soon as an application
is launched, a message is implicitly sent from the Application Runtime Library (RTLib) to the
resource manager. The Application Proxy notifies the Application Manager, which creates an
application descriptor and puts it into a waiting list. The Resource Manager is notified also; it
recognizes that an event for which a new run of the resource allocation policy may be triggered.

The Scheduler Manager comes into play in cases like this. This module is responsible for load-
ing a Scheduling Policy plugin and running the algorithm. As a general behavior, the policy is
executed on the basis of the occurrence of specific events or the elapsing of a given period. Once
it terminates, a new resource allocation schema is defined. At this point, the Synchronization

Manager is responsible for performing a sequence of steps to synchronize the application execu-
tion with the resource manager control. Since this is actually the core of the resource manager,
most of the developments required to introduce reliability and timing supports will be focused
on this part.

Regarding the hardware support instead, we need suitable system interfaces for accessing low-
level mechanisms to enforce the resource assignments. The Platform Proxy and the Power

Manager are the two components creating the abstraction layer on top of such platform and
resource-specific interfaces. For instance, the BarbequeRTRM relies on the Linux frameworks
cgroup and cpufreq, to (1) bound the amount of CPU time, memory and of CPU cores set
assigned to each application, and (2) set the current clock frequency of the managed cores.

For resources that are out of the direct control of the Linux operating system, like the processing
units in the HN, we need to rely on a specific Platform Library. Similarly to the Linux case,
the library must usually include a first API to control the assignment of resources to specific
tasks or processes, and a second one for power management purposes. The latter is typically
made of functions for runtime monitoring (current sensors values, hardware counters, etc. . . ) and
functions for performing control actions (e.g., resource reservation). Examples of such libraries
are already available in commercial systems. AMD and NVIDIA in fact, provide their own
libraries to control and get runtime data from the GPUs, respectively called AMD Display
Library (ADL) [3] and NVIDIA Management Library (NVML) [16].

Similarly, in RECIPE we follow the approach developed during the MANGO project, with the
HN Library described in Section 2.5 to provide the abstraction layer on top of the custom
hardware resources deployed on FPGA. What we expect at this level is the development of
additional functions (Work Package 4) that we could exploit to perform fine-grained control for
both reliabilty and time-constraints management purposes.
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Figure 2: Adaptive Execution Model: the adaptive applications implements a BbqueEXC derived
class. A control thread is responsible of the member function calls. The application is aware of
the assigned resources and can negotiate.

2.2 Runtime managed programming models

In this section, we briefly mention the programming models already discussed in D2.1 and D2.4,
as they are, in a certain measure, part of the the local resource manager.

We introduced the Adaptive Execution Model (AEM), as a programming model thought for
the implementation of reconfigurable applications (also know as “malleable” applications). The
reference target of this model is the class of applications featuring a regular execution flow,
which iterates over a big data set of a stream of input data (e.g., streaming processing). The
application can therefore tune its parameters and level of parallelism (e.g. number of threads)
according to the computing resources actually assigned. From the programming design perspec-
tive, the approach to AEM consists of defining a class derived from a base class coming with the
RTLib and implementing the already provided member functions, whose invocation is driven
by the interaction between the a control thread and the resource manager. From the program-
ming language point of view instead, the developer can choose between four options: C, C++,
Java and Python. In case of heterogeneous systems, OpenCL can by also exploited, by prop-
erly structuring the sequence of OpenCL functions calls. The BarbequeRTRM in fact, provides
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Figure 3: MANGO Programming Model: the execution is built on top of the Adaptive Execution
Model.

some management capabilities of OpenCL applications, by intercepting the device requests and
returning the options selected by its resource allocation policy.

During the MANGO project then, we built the MANGO Programming Model on top of the
Adaptive Execution Model. In this case, the applications are structured into multiple tasks
exchanging data through memory buffers. The local resource manager is responsible of mapping
the resource assignments, at runtime, without involving the developer. This programming model
is the reference choice for the application use cases targeting FPGA-based resources. From the
programming language perspective, the developer can currently choose bewteen a C or C++
API, while a Python wrapper development is in progress and will be made available in a very
few months from now.

In RECIPE, we do not expect to introduce disruptive changes in these programming models.
To date, we planned to introduce a couple of functions that the developer can use to tune
the reliabilty support, later discussed in Section 3. Finally, during the third phase of the project
(Integration) we will evaluate the necessity of extending the already available interfaces to specify
application requirements.

2.3 Process management

In order to properly manage HPC workload, especially legacy applications for which it would
be very hard to require some porting effort, we introduced the possibility to manage generic
without exploiting any of the run-time managed programming models recalled in the previous
section (AEM and MANGO).

This further option has been made possible thanks to a Linux kernel feature called Kernel
Process Connector. Thanks to this, we can observe events related to the creation or destruction
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of processes in the system, which means applications starting or terminating. We integrating
this kernel featuring into the BarbequeRTRM by implementing a component called Process

Listener. Afterwards, we introduced a user-interface through which it is possible to specify the
executable names of the processes we are actually interested in.

Once the name of a process matches the one for which the Process Listener has observed the
creation (usually a fork-exec combination), a suitable process descriptor must be created. To
this purpose, the classes Process and Process Manager have been implemented. This manager
is a sibling of the Application Manager, already visible in Figure 1. This means that, while
the latter will be in charge of managing the adaptive applications (implemented via AEM or
MANGO programming model), the former will keep track of the status of the generic processes.

At this point, new schedulable entities have been queued, and the need of executing the resource
allocation policy is triggered. This will assign the resources needed to run. This is performed by
sending the optimization request notification to the Resource Manager. This will in turn call
the policy entry point function. Further changes obviously involve the code of the policies, which
now should pull schedulable entities also from the Process Manager.

When the termination of the managed generic process is intercepted, the management procedure
follows the opposite flow. The process is marked as DISABLED, the policy is invoked, resources
are released and the descriptor is destroyed.

2.4 Data provider interface

The BarbequeRTRM provides different interfaces to connect the resource manager to external
components or frameworks, like for instance the Global Resource Manager.

In this subsection, we show the Data Communication Interface, which enables the Barbe-
queRTRM as data provider. More in detail, the resource manager can report about the status
of the hardware resources or the running workload located at the managed node.

Data consumers can retrieve such a data by following a publish/subscribe paradigm. To this
aim, the BarbequeRTRM installation comes with a suitable library (libbbque dci), for the
implementation of the client-side code. On the server-side instead, the Data Manager is the
module devoted to the data collection activity.

Data clients can thus interact with this module through a set of API exposed by the library as
shown by Figure 4. The communication protocol is based on a publish/subscribe schema managed
by the Data Manager module. Third-party clients can interact with the Data Manager towards
the API provided by the BarbequeRTRM Data Communication Interface (libbbque dci). They
can subscribe by specifying the type of data they are interested in, and the time basis according
to which they will receive them. In this regard, the data exchange protocol provides two possible
modes: periodic and event-based mode. The former allows the client to specify a time interval
for periodic receptions of data. The latter leaves the data server in charge of sending updated
data only when certain events occur.

The BarbequeRTRM sends to subscribers the status messages containing the requested data.
Currently, the type of data includes applications and resources status. In the former case, the
status message will contain information about the currently active applications, their resource
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Figure 4: The interaction between the monitoring applications and the BarbequeRTRM through
the Data Communication Interface.

mapping tasks, and the observed runtime performance. In the second case, the information
provided includes the allocation of resources (computing units and memory) and, whenever
available, their runtime status (e.g., load, temperature and power consumption).

As we said, on the Data Manager side (e.g., the publisher) there is a server in charge of managing
incoming subscriptions. Its default TCP port is configurable at the BarbequeRTRM compilation
stage, or changed later by modifying the BarbequeRTRM configuration file.

On the client side (e.g., the subscriber), the application has to instantiate the DataClient object.
This class hides to the developer the connection details, providing member functions for the data
subscription process. The object allows the client to set also a custom callback function, which
will be executed everytime new data comes from the BarbequeRTRM Data Manager server.

The subscription process is based on the call of the Subscribe(...) function, by passing the
arguments needed to specify the type of data the client is interested in, and the mode flag set to
SubscriptionMode t::SUBSCRIBE. In particular, the Subscribe function accepts the following
parameters:

• Filter: it describes the type of status information the subscriber wants to receive.

• Event: it describes if the data delivery is periodic or event-based. In the latter case it
specifies also which type of event triggers the publishing.

• Period: it represents the time interval to receive updates in case of periodic subscription.

• Mode: it indicates the mode of the request (e.g., subscribing or unsubscribing).

Multiple subscription requests can be sent through multiple subscription calls. The client can
extend its subscription by sending further requests. New parameters must specify only the new
data type in the filter attribute, for which it wants to receive data. If a new period is provided,
this will supersede the previous one.

Similarly, the client can revoke its subscription by calling the DataClient::Subscribe(...) func-
tion, with the mode argument set to SubscriptionMode t::UNSUBSCRIBE. The client can also
selectively specify for which type of event or filter elements it wants to unsubscribe. A suitable
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reliability management mechanism operates in case of unreachable client or server.

As mentioned above, the BarbequeRTRM will publish information by sending messages based
on:

• Time period interval

• Event occured

In the first case, rate-based clients are updated according to their required rate. In the second one,
each time a specific event occurs, affected status information is updated and all the subscribers
will receive the new data. Three types of events are currently defined:

• Application event: it is triggered whenever there is a change in any application status
(starting, ending. . . ).

• Resource event: it is triggered whenever there is a change in any resource status (avail-
ability, thermal threshold reached. . . ).

• Schedule/allocation event: it is triggered when a new allocation/schedule policy is
executed.

Moreover, only the information required by the filter of each client is published to that client.
These types of information are:

• Application status: it contains information about running applications, their perfor-
mance and current resource allocation.

• Resource status: it contains information about available resources, their usage as well
as power and thermal information.

Everytime new data comes from the BarbequeRTRM DataManager, the provided callback is
called, so that the client can process the incoming information (i.e., storage, plotting,. . . ).

Considering this feature of the BarbequeRTRM as the communicaton interface between the local
and the global resource manager (SLURM), we need to reason on the current spectrum of data
that the first can provide to the second, keeping in mind the reliability and the time constraints
management goals pursued by the RECIPE project. For the first, we need to add some hardware
reliability status information, that will be retrieved as it is explained in the next section. For the
second instead, the BarbequeRTRM already performs a per-task monitoring of the application
execution times. By forwarding this additional set of data, we enable the conditions for which
the global resource manager could implement proactive policies, for preventing both reliability
issues and deadline misses.

2.5 Hardware abstraction layer

In RECIPE, the hardware abstraction layer (HAL) is the entity in charge of enabling transpar-
ent and location-independent access to all heterogeneous resources in an unified way. Figure 5
illustrates the main software components this HAL is composed of.

The topmost layer in the figure is not part of the HAL, since it represents applications themselves.
We have added this layer to the figure with the aim of showing the supported languages (C/C++)
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Figure 5: Overview of the components of the HAL.

and the user libraries (MANGO API, OpenCL and NVIDIA CUDA) that can interface with the
bottom layers, which already implement the RECIPE hardware abstraction layer.

The next layer in the figure corresponds to the HN library (libhn). This layer offers a public
Application Programming interface (API) for accessing different heterogeneous resources in an
unified way. Deliverable D2.1 provides a detailed description of this library, but in summary it
offers:

• Monitoring to get status information of the heterogeneous components.

• DMA and memory access to transfer data between DDR memories located in the hetero-
geneous resources and hosts of the prototype.

• Synchronization to implement mutual exclusion for critical sections when different and
concurrent collaborative kernels runs in the same FPGA.

• QoS to setup Quality-of-Service policies on the access to the resources.

• Interrupts to notify applications about kernel events occurrences.

• Checkpointing C/R to enable the mechanisms developed in WP4 to the upper layers.

• ShMem to implement an efficient data transfer mechanism between the applications and
the HN daemon.

• Configuration to configure and run kernels, among other aspects.
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• Debugging to debug the system.

• Communication to connect and communicate with the HN daemon.

As far as this document is concerned, the highlighted components of this layer will enable the
BarbaqueRTRM to implement reliability and time-constraints management capabilities. To this
end, the monitoring module will be modified to deliver the information needed for the reliability
models. The QoS module will be created to enable the possibility of adjusting dynamically the
quality of service levels each application requires. Finally, the checkpointing C/R will act as an
entry point to enable checkpointing and restore primitives at the FPGA level. Nevertheless, the
API for these modules have to be concreted in the next phase of the project, but the reader
can already find a description of the fault-tolerance and QoS techniques proposed in deliverable
D4.4.

The HN daemon is the other main component of the HAL. It is implemented as a user-space
process and appears as middle-ware between the applications and hardware heterogeneous re-
sources. It accesses the hardware through PCIe drivers mainly. For this purpose, the daemon
uses a different backend instance for each hardware resource handled. It communicates with the
application through the HN library, using an inter-process communication model based on Linux
pipes. In this process an application connects to the Application Master who opens a private
pipe and creates an Application Slave, which acts as a proxy inside the daemon. Then, all data
communications between the application and daemon are carried out through its representa-
tive proxy, except for those related to high volume memory data transfers, which usually are
performed using the shared memory mechanism enabled for that purpose.

Although the described above is the required from the point of view of the BarbaqueRTRM
for satisfying its goal, we aim at analyzing the possibility of supporting location-independent
resource access to native OpenCL and even NVIDIA CUDA applications as part of the activities
related to WP4.
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3 Reliability Management Support

In this section we describe the approach designed for handling reliability issues that could affect
the hardware resources managed by the BarbequeRTRM. To this purpose, we needed to think
about suitable extensions to introduce in the local resource manager, as explained in 3.1. These
extensions must rely on a set of possible fault management actions (3.1), which can be performed
only if properly supported by the underlying layers, i.e., hardware and operating system (3.2).
Then the availability of such actions enables the possibility of implementing fault management
strategies, following both a reactive and a proactive approach (3.3).

3.1 Fault management actions

In order to handle with occurrence of faults on a hardware architecture, a suitable resource man-
ager must have the opportunity of performing low-level actions, involving the running workload
and the underlying platform. These action shall allow us to react to faults or avoid them if possi-
ble, other than mitigating the consequences at application-level, like generating data corruption
or leading to crashes during the execution of tasks.

To this purpose, we identified a set of common management actions, that we can implement or
put in place, by integrating and exploiting tools already providing them.

Checkpoint

The execution of a task or application is dumped as a set of “image files” on a mass storage
device. This action allows us to have a persistent copy of the application or task execution status.
Accordingly, we can resume the execution of the task or application, later on, in case of faults
leading to unexpected terminations or data corruption.

Restore

This is the complementary action with respect to Checkpoint. If we have a persistent copy of
the task or application status, the Restore will consist of relaunching the execution of the task,
starting from the checkpoint instead of starting over again. This possibility is crucial for critical
HPC applications processing a huge amount of data (Big Data), for which a complete restart
would represent a big penalty, other than a waste of time and money.

Freeze

The action of freezing a task or application consists of blocking it in a quiescent state. The
application may still occupy system resources, but does not react to user input and does not
provide any output. We can use this state to safely perform a migration of the application on
a different node, or to recover from a transient fault by stopping it and resuming the execution
with a Restore.
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Migration

The term “migration” usually indicates the possibility of changing the set of processing resources
currently allocated to run a given task or application. In most cases, this mechanism allows the
operating system to balance the load of the processors and mitigate the thermal stress. If we can
access information about the reliability level of a processor, we can use this action to dynamically
move a task away from an “unreliable” set of resources. The complexity of the implementation
of the task migration is however extremely platform-dependent. On shared memory systems,
like multi-core CPU based ones, triggering a migration is trivial and does not require much
additional integration effort from the resource manager perspective. The complexity of this
action is typically handled by the operating system. Conversely, on heterogeneous systems, with
basic runtime and featuring different memory domains, migrating a task (kernel) is a more
complex operation. The interruption of a kernel require the availability of preemption or freeze
mechanism, other than the possibility of moving the execution status of the kernel from one
memory node to another. Lastly, the possibility of resuming the execution from the status
information. Finally, one last thing to keep in mind is that, especially in HPC system, the
resource manager should take into account that the migration has a cost in terms of overhead.
This cost, as it should be easy to imagine, depends on the platform and the placement of the
specific source and destination processors and memory nodes.

3.2 Low-level support

As we explained in the previous section, the effort to carry out, in order to allow the Barbe-
queRTRM to perform the aforementioned management actions, depends on the specific target
platform. When the target is represented by a Linux-based system, running tasks on CPUs, the
management actions described are already provided by existing tools or Linux frameworks.

The possibility of freezing a process, for instance, is a built-in functionality that the Linux
kernel expose to user-space via the freezer cgroup subsystem [14]. Similarly, the possibility of
migrating the tasks, is implicitly provided by the cgroup subsystems already exploited by the
BarbequeRTRM, to enforce the resource assignments defined by the policies.

For checkpoint and restore instead, the support provided by the Linux kernel required the im-
plementation of a specific user-space tool. To this aim, the most known tool, already available,
is CRIU (Checkpoint/Restore in Userspace) [8]. This tool comes with a library, that the Bar-
bequeRTRM can link to get access to the checkpoint/restore functionalities. This means that,
most of the effort is represented by the integration of CRIU, and the introduction of a set of
changes in the internal data structures of the resource manager, needed to control the execution
status of the managed applications.

In RECIPE, we also target heterogeneous hardware platforms, featuring FPGA-based computing
resources, like HLS accelerators and programmable GPU-like soft-core as discurred in deliverable
D4.1. No tools are currently available for this custom hardware. The implementation of the
management actions therefore, requires a specific development effort. As outcome of WP4, we
expect the possibility of relying on a custom tool, providing a library for easy integration in the
BarbequeRTRM. This would enable the possibility of performing the same management actions,
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Figure 6: Early BarbequeRTRM reliability support proposal and external models interfacing.

in a portable manner, whatever the target hardware is, i.e. a homogeneous set of multi-core CPUs
or a heterogeneous system.

3.3 Fault management strategy

In Figure 6, we sketched the management flow that we aim at putting in place via the Barbe-
queRTRM, in order to handle or prevent the occurence of faults and failures. The figure aims at
providing an overview of the reliability-aware resource management capabilities. The detailed se-
quence of management actions will be provided in the next deliverable, once the reliability-driven
policy will be implemented.

Looking at the figure, we can observe on the top the presence of a Reliability Model (WP3 out-
come) feeds the BarbequeRTRM with data about the reliability status of the managed resources.
Such data can consist of probability values P , in the [0..1] range, representing predictions. The
interface between the resource manager and the modelling framework is described in deliverable
D3.2. Then, depending on the resource and the application requirements (e.g., priority, critical
level, . . . ), we can set a probability threshold T , under which the resource is considered not com-
pletely reliable. Therefore, we need check the application currently using the resources, i.e., the
applications potentially affected by the probability of a fault, and decide if the fault probability
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is worth considering or not. The former case would lead our local resource manager to follow a
Proactive strategy. This means takes decisions in advance, trying to prevent the occurrence of
faults and related consequences on the applications execution. A possible strategy could consist
of migrating the workload on set of reliable resources or increase the checkpoint rate, so that in
case of fault the loss of data is minimimized and the execution can be safely restored. Obviously
the specific strategy will depend on the policy implemented.

If the probability value is P = 1 instead, the model is notifying the resource manager about
the fact that a fault or failure has already occurred. In such a case, the resource manager must
properly react. In the figure, we show a possible Reactive strategy, consisting of disabling the
faulty resources and forcing a rescheduling of the applications. This leads to a migration of the
affected workload onto a different set of processing resources. Here, the selection of the target
resources depends on the actual policy in execution. For example, some policies can consider the
history and rank the resources according to a reliability index.

3.4 Extensions

Reliability actions

As explained, the implementation of what we called reliability actions is deeply bound to the
support provided by the hardware. This means that the Platform Proxy component, visible
in the overall BarbequeRTRM layered architecture shown in Figure 1, has to be extended with
an additional internal API. The Platform Proxy provides the interface between the hardware
abstraction level and the resource manager internals. Therefore, we need to introduce at this
level, the functions that will be called by the resource manager components involved in the
reliability management strategy, to perform the freeze, the checkpoint and the restore of an
application.

To this aim, we introduced the abstract class called ReliabilityActionsIF and show in the
UML class diagram in Figure 7. The class requires the implementation of the following member
functions:

• Dump(): perform the application checkpoint;

• Restore(): resume the application execution from the last checkpoint;

• Freeze(): freeze the application execution;

• Thaw(): thawn a previously frozen application;

While, the base class Platform Proxy provides an empty implementation of such functions. The
derived class Platform Manager implements the functions working as dispatchers towards the
Local Platform Proxy or the Remote Platform Proxy instances, depending on where the ap-
plication is expected to run. In the context of RECIPE, the BarbequeRTRM operates as local re-
source manager, therefore the remote applications are not part the management flow. Finally, the
Local Platform Proxy will call the implementations provided by the Linux Platform Proxy

and the MANGO Platform Proxy, to perform the required action on the part of the application
running on CPU and on the FPGA-based resources, respectively.
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Figure 7: BarbequeRTRM: PlatformProxy interfaces extended with ReliabilityActionsIF.

Concerning task migration instead, as we said, this mechanism is already available for CPUs,
while the aforementioned actions represent pre-requisites for implementing task migration among
FPGA-based resources. As a consequence, by extending the MANGO Platform Proxy with the
correct implementation of the ReliabilityActionsIF here described, we should be able to
implement a task migration mechanism also for kernels running on heterogeneous units.

Reliability manager

The Reliability Manager represents the core component of the reliability-aware management
support. It is in fact, the part of the local resource manager in charge of monitoring the status
of the managed hardware resources. In the context of RECIPE, the monitoring task will exploit
the Reliability Model provided as outcome of WP3. To this aim, we developed the Hardware
Reliability Library (libhwrel) as interface between the resource manager and the modelling
framework. More details on the library are reported in deliverable D3.2.

Once the model is available, the monitoring task can be accomplished by following two possible
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approaches: ondemand or periodic. In the former case, a possible user, e.g., the resource allocation
policy will require the reliability status (fault probability) related to each resource, every time
the policy is executed. While, in the latter case, the Reliability Manager will spawn a thread
in charge of periodically check the healty conditions of the hardware. In case of fault detection
or fault risks, this will be the resource manager component in charge of triggering the reliability
management strategy.

Workload status management

The possibility of freezing applications must be properly handled, considering two new possible
status for managed applications and processes. The first one is FROZEN, and must be set once
the freeze action has been successfully performed. The other one is THAWED, and must be
set when we decide the resume a frozen application of process. Thawed applications must be
included in the queue of applications for which a new run of resource allocation policy is needed.
This require, first, to extend the set of possible expected state transitions in Application and
Process descriptors, and how they are managed (and allowed) by the respective Application

Manager and Process Manager. Then, current resource allocation policies must be properly
modified by adding the code to loop on the queue of thawed applications.

Programming models

As we stated among the goals of the project, we aim at improving the reliability of the target HPC
platforms, with no or minimum involvement from the application development side. This means
that, at local resource manager level, the management layer will be responsible of performing
periodic checkpoints of the applications and restoring them in case of faults. This will be done in
a transparent manner with respect to the application, which means no changes and no additional
function calls in the application code.

However, some application developers may want to control the checkpoint rate or force the
checkpoint under certain circumstances. To this aim, we can extend the API of the two runtime
managed programming models with the following self-explanatory functions, starting from the
Adaptive Execution Model.

void SetCheckpointRate( int every_nr_run );

void CheckpointNow ();

The first function allows the developer to configure the application checkpoint rate. The rate is
expressed in number of onRun executions. Once the given number elapsed, the control thread
sends a checkpoint request to the local resource manager. The second option instead represents
a request for performing the checkpoint at the time of the function call.

Accordingly, these functions can be wrapped and made available at MANGO Programming
library level. In such a case, we need to consider the two different APIs supported (C and C++).
From this, for the C API we will have the following one-to-one matching, with respect to the
AEM:
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/* C */

void mango_set_checkpoint_rate( int every_nr_run );

void mango_checkpoint_now ();

For the C++ API, the aforementioned functions will be members of the class BBQContext:

/* C++ */

class BBQContext {

public:

...

void SetCheckpointRate( int every_nr_run );

void CheckpointNow ();

};

Putting all together

Once the Platform Proxy instances have been extended with the reliability management inter-
faces, we can build the necessary interaction among the BarbequeRTRM components, in order to
properly put in place the aforementioned reliability-driven strategy and performing the selected
management actions.

In Figure 8 we sketched the UML sequence diagram showing the interaction among the Barbe-
queRTRM internal components. We can see the Reliability Manager triggering the freezing
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request, by calling the Freeze() member function of Platform Manager. This will forward to
call to the specific Freeze() function, implemented by each loaded Platform Proxy. This means
that if we have a multi-tasking application (implemented by using the MANGO programming
model) running on a heterogeneous set of processing units, the Platform Manager will call the
function implemented in the Linux Platform Proxy for freezing the process or threads running
on CPUs and the MANGO Platform Proxy for freezing the kernels running on FPGA processors
and accelerators. Finally, once the application has been actually frozen, the Platform Manager

can update its status information by setting it to “FROZEN” via Application Manager. For
non-adaptive applications (e.g. generic processes), the sequence is the same except for the
manager involved. In this case in fact, the Process Manager comes into play instead of the
Application Manager.

Reverting the effect of a freeze, i.e. thawing an (adaptive) application or a managed process,
requires the Reliability Manager to notify the Application Manager or Process Manager

first, in order to put the description in the proper scheduling queue. To this aim, we introduced
the member function SetToThaw() for both the managers. This has also the effect of updating the
internal state of the related Application or Process instance. Then, in order to properly resume
the execution, a resource allocation policy run is needed. Accordingly, an optimization request
must be notified to the Resource Manager, afterwards the selected policy is executed. Once the
policy has completed its run, the synchronization phase starts to make the resource assignments
effective. The Synchronization Manager invokes the MapResources() function of the Platform
Manager, which forwards the call to the respective Platform Proxy modules, depending on the
type of resources. Once the assignment becomes effective, we are ready to resume the application

http://www.recipe-project.eu 2.2 RECIPE Local Resource Manager Prototype — 26

http://www.recipe-project.eu


or process. The Thaw() function call follows the same flow of MapResources, and is responsible for
resuming all the parts of the application, i.e, in case of multi-tasking application (e.g., MANGO
application), the specific Platform Proxy version will resume the execution of kernel running
on the target part of the system (e.g., CPU or HW accelerator). If the thawing is successfully
completed, we can update the state of the application or process, setting to RUNNING, through
the SyncCommit() function of the respective manager.

Checkpoint and Restore will follow a very similar approach, therefore we skip their description.
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4 Timing Analysis Support

In the RECIPE project, one of the objectives of the local resource manager is to allocate comput-
ing resources to applications, providing the possibility of guaranteeing performance and timing
constraints, making the system real-time.

The programming model developed during the MANGO project, requires that the application
would provide a description of the inter-dependencies of the tasks composing it. In other terms,
which are the shared memory area read or written by the tasks, and the timing requirements (e.g.,
task deadline). This description, in form of task-graph, is forwarded to the resource manager,
which is responsible of allocating resources for each task (kernel) and memory buffer included in
the graph. At run-time, the runtime library (RTLib), linked to both Adaptive Execution Model
and MANGO applications, allows us to profile the execution time of each task and provide a
feedback to the resource manager. Given the availability of these features, the BarbequeRTRM
can be developed further to guarantee the application timing requirements, by introducing two
functionalities: (1) analysis of the tasks execution time; (2) time-constrained resource allocation
policy.

4.1 Background

The estimation of the Worst-Case Execution Time (WCET) is essential for real-time systems,
in which the timing constraints required by the tasks must be guaranteed. A scheduling policy
requires the timing analysis to estimate a WCET value for the tasks requiring the highest service
level (maximum timing guarantees), that is greater or equal to the real WCETs. On the other
hand, these estimations should be as tight as possible to the real WCETs, in order to minimize
the resource assignment over-provisioning.

Recently, getting a non-underestimated but tight WCET has become a challenging problem.
The growing computational power demand of systems, in addition, but opposed to, the reaching
of technology limits, is increasing the hardware complexity of processors – such as the introduc-
tion of many-cores, multi-level caches, complex pipelines, etc. This is especially true in HPC,
where the computing cluster is extremely complex. This leads to hindering the use of traditional
WCET estimation techniques [12] [13] [6]. The problem is even magnified when dealing with
Commercial-Off-The-Shelf (COTS) components, very diverse timing requirements and general-
purpose operating systems [17] [18].

Given the aforementioned scenarios, probabilistic real-time has been proposed as a possible
solution to WCET estimation problem. This approach is founded on the well-known Extreme
Value Theory (EVT), which is typically applied to natural disaster prediction, For example, to
estimate the probability of unseen catastrophic floods. The use of EVT in real-time embedded
systems has been proposed at the beginning of 2000s by Burns et al. [7] and Bernat et al. [5].

Probabilistic real-time based approaches can be divided into two classes [1]: Static Probabilistic
Time Analysis (SPTA) and the Measurement-Based Probabilistic Time Analysis (MBPTA).
MBPTA, used in this project and subject of a subsequent deliverable D3.4, has been proposed
to estimate the so-called probabilistic-WCET (pWCET), by directly sampling the execution
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times of the tasks. Unlikely the classical WCET estimations, the pWCET is not a single value.
Rather, it is a statistical distribution, characterized by the following complementary cumulative
distribution function (ccdf):

p = P (X > WCET )

where X is the random variable representing the task execution time. By using this distribution,
it is possible to compute the probability of violation (p) of a given WCET or, vice versa, the
WCET given the probability of violation (p). The pWCET is considered safe if the estimated
distribution “upper-bounds” the worst-case execution time with a probability value equal or
higher than the real one.

4.2 A two-phase strategy

The BarbequeRTRM analyzes the timing profile of applications (or tasks), in the sense that it
observes the execution times of the tasks and, thanks to the related tools, described in deliverable
D3.2, characterizes them with a statistical distribution. Since we are interested in guaranteeing
that the worst-case execution time (WCET) of the tasks does not exceed their deadlines, the
statistical distribution usually represents the WCET values and not a generic execution time.
Accordingly, the distribution is called probabilistic-WCET (pWCET).

The timing analysis is initially performed offline, as shown in Figure 10, to profile the applications
tasks, running on target processors, in a sort of training phase. This can also be done online,
provided that the application runs multiple times and multiple deadline misses can be tolerated
during this training phase.

After the training phase, the application is executed on the processing resources allocated by the
time-constrained policy (see next subsection). At run-time, the BarbequeRTRM keeps gathering
execution time samples of the tasks. These samples can be used to check if the behaviour of
the application changes: too large values may hinder the reliability of the estimated pWCET
distribution; too small values means that we are reserving more resources than necessary to
the application. How to detect if the application is in any of these two situations (and then re-
trigger the scheduling policy) is still an open problem. We are currently exploring two possible
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approaches: (1) using the samples to periodically re-estimate the pWCET distribution and use
a fault-detection mechanism on the distribution parameters; (2) using the samples as input of a
Goodness-of-Fit (GoF) statistical test against the previously estimated distribution. Preliminary
results showed that the first method is more reliable than the GoF tests, but it is also much more
expensive, in computational terms. By saying more reliable we mean that it showed the occur-
rence of less false-positive and false-negative results. Further investigations of both approaches
are needed and planned in next few months.

4.3 Time-constrained resource allocation policy design

When an application is started or a rescheduling is required by the timing analysis tool or by
the reliability manager, the BarbequeRTRM invokes the scheduling/allocation policy. Writing
such policy is not trivial. The resource manager has to take into account that the WCET is
influenced by several factors:

• amount of resources allocated (e.g. network bandwidth assigned)

• type of resources (CPU, GPU, custom accelerator, etc.)

• presence of co-running tasks on the same CPU

• presence of co-running tasks that shares some hardware (e.g. cache, bus, etc.)

• current DVFS settings according to temperature and power constraints

• application/task accessing external I/O devices

Obtaining a deterministic relation between such factors and the application or task WCET is in
general infeasible. A smart algorithm that learns online the application behaviour in according to
such factors is required. According to application requirements and criticality, different priority
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levels can be considered. For example, meeting the timing deadline can be more important
compared to reliability issues, at least for time-sensitive applications. Vice versa, long running
batch applications may require strong reliability requirements and less strict, or not even not
interested in, timing constraints.

Another possible approach we would like to exploit is an approach coming from Mixed-Criticality
(MC) systems: to assign a priority (criticality) level L = {1, 2, ..., N} to each task. The higher
the priority, the higher the importance of the task. Usually, the priority levels are limited and
represented with L = {LO,MI,HI}. A mixed-criticality scheduler or resource manager must
guarantee the execution of the jobs of tasks of a certain priority l ∈ L even by dropping the jobs
of tasks of lower priority level l′ < l. This is the major difference with respect to the traditional
priority schedulers. This concept has been studied for decades in embedded sytems but not yet
in HPC. In traditional MC systems, the WCET of the tasks are estimated per priority levels, i.e.
a task with priority l has C1, C2, ..., Cl estimated WCETs. In our scenario, the different WCETs
can be computed easily thanks to the estimated probability distribution function.

Having applications with different real-time requirements, makes the problem of balancing the
worst-case performance with the average-case performance extremely interesting. If the tasks of
an application have no strict timing constraints, or according to the MC-like case a low priority,
its tasks can be scheduled in order to reach the maximum throughput, i.e. the maximum average
performance. Instead, the highest priority tasks have to be scheduled with the larger probability
of meeting their deadline, i.e. according to their WCET values. The co-existence of tasks with
different timing constraints makes the resource allocation policy challenging, especially when
tasks share resources and resource contention may inflict timing penalties to the execution of
other tasks.

4.4 Extensions

The introduction of time-constraints management capabilities in the BarbequeRTRM is a much
less invasive task with respect to the changes required by the reliability management support.
What we need here is to profile the execution of the application at runtime and allows the resource
allocation policy to access such profiling data. The joint work performed by the resource manager
and the application run-time library (RTLib) already allows us to collect time samples of the
application executions and its tasks, in case of MANGO application running multiple kernels.
These samples will be forwarded to the Timing Analysis Tool shown in Figure 10, in order to get
a probabilistic model of the WCET of the application (or the single tasks), as already explained.
To this aim, we developed the Timing Analysis Library (libta). More details on the library can
be found in deliverable D3.2.

The missing part consists of storing the probabilistic model, such that the resource manager
could retrieve it at runtime. In this regard, the most straightforward strategy for us is extend
the application “recipe” file, described in deliverables D2.1 and D2.4 with an additional section.
Then, for the runtime exploitation, we will need utility functions to quickly check the matching
between the actual execution times and the pWCET model. This, jointly to the resource control
mechanisms already available or that will be integrated in the next months, complete the set
of requirements to satisfy in order to enable the possibility of adding time-constraints driven
resource allocation policies to the BarbequeRTRM.
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Finally, the actual design of the policies will necessitate a suitable experimental campaign,
consisting of 1) executing benchmarks or micro-kernels on the RECIPE target hardware, in order
to validate the methodology behind the timing analysis; 2) observe the application executions in
realistic scenarios, where in the resource manager has to deal with managing resource contention
and notification of faults occurrences.
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5 Conclusions

In this deliverable, we described the developments recently introduced in the local manager
prototype (current BarbequeRTRM development version), in order to open the road to the
forthcoming reliability and time-constraints management policies. The changes have required the
introduction of new components, the extension of existing internal interfaces and the integration
of platform-specific supports for freezing, thawing, checkpointing and restoring the execution of
the managed applications.

For the time-constraints management part instead, the resource manage will feed an external
timing analysis tools with profiling information, including the execution times of the applications
and related tasks. The results of the analysis will be then exploited at run-time to drive the
policy in the selection of the processing units to assign or to detect anomalies, due to 1) resource
contention, 2) resource underutilization or 3) possible occurence of faults.

Next steps, will go in the direction of completing the integration between the local resource man-
ager and the other components of the stack (global resource manager and programming models),
other than exploiting the reliability support coming from WP4 through the hardware abstrac-
tion layer, and the modelling tools developed in WP3. These pieces, all together, will enable
the possibility of actual implementing the reliability-aware and time-constraints driven resource
allocation policies for applications targeting HPC systems, which is the ultimate RECIPE de-
velopment effort regarding the BarbequeRTRM.
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A Download and Installation

The local resource manager prototype (The BarbequeRTRM) has been made available through
two public repositories. This allows the user to follow two possible approaches in the installation
of the framework.

The first one consists of a stand-alone installation, including the resource manager and the pro-
gramming library for implementing reconfigurable application, according to the aforementioned
Adaptive Execution Model. In such a case, the repository (based on the GIT versioning system)
is located at the following URL: https://bitbucket.org/bosp/bosp/src/bosp/.

The RECIPE prototype version is tagged as recipe-v0.1. Once the GIT respository has been
cloned, the user can proceed as follows for the selection of the correct version.

$ cd bosp

$ git checkout recipe -v0.1

$ git submodule init // if not downloaded yet

$ git submodule update --recursive

Then, for the configuration, compilation and installation we reported the steps on the official
website of the BarbequeRTRM Open-Source Project (BOSP: https://bosp.deib.polimi.it/
doku.php?id=installation)

The second option instead, consists of the MANGOLIBS project, which includes most of the soft-
ware stack released with the H2020 MANGO project and that will be further developed during
the RECIPE project. This repository allows the user to download the following components:

• BarbequeRTRM: the local resource manager and the Adaptive Execution Model library

• HN library/daemon: the hardware abstraction layer on top of the FPGA-based processing
resources

• MANGO library: the programming library for MANGO and RECIPE heterogeneous plat-
forms

• Toolchains for compiling the application kernels, targeting processing architectures used
in MANGO

• Sample applications for testing and development reference purposes.

The GIT repository, in this case, is located at the following URL: https://bitbucket.org/
mango_developers/mangolibs/src/master/. The reference version for this prototype release
is tagged as v0.5 and, similarly to BOSP, it can be selected as follows:

$ cd mangolibs

$ git checkout v0.5

$ git submodule init // if not downloaded yet

$ git submodule update --recursive
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The configuration, compilation and installation of all the components of the stack included in the
MANGOLIBS project has been documented in the public deliverables (“MANGO User Guide”)
of the MANGO project. Currently, the procedure is still valid, although the functionalities that
RECIPE will introduce are not all available yet.
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Francisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded
cots processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4):34:1–
34:25, January 2012.

[18] F. Reghenzani, G. Massari, and W. Fornaciari. Mixed time-criticality process interferences
characterization on a multicore linux system. In 2017 Euromicro Conference on Digital
System Design (DSD), pages 427–434, Wien, Aug 2017. IEEE.

[19] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi, Pa-
van Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A Chien, Paul
Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez, Save-
rio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven Leyffer,
Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon Stearley, and Eric Van
Hensbergen. Addressing failures in exascale computing. The International Journal of High
Performance Computing Applications, 28(2):129–173, 2014.

http://www.recipe-project.eu 2.2 RECIPE Local Resource Manager Prototype — 36

https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://www.recipe-project.eu

	Introduction
	Overview and document structure

	The BarbequeRTRM
	Architecture
	Runtime managed programming models
	Process management
	Data provider interface
	Hardware abstraction layer

	Reliability Management Support
	Fault management actions
	Checkpoint
	Restore
	Freeze
	Migration

	Low-level support
	Fault management strategy
	Extensions
	Reliability actions
	Reliability manager
	Workload status management
	Programming models
	Putting all together


	Timing Analysis Support
	Background
	A two-phase strategy
	Time-constrained resource allocation policy design
	Extensions

	Conclusions
	Download and Installation

