
REliable Power and time-ConstraInts-aware Predictive management of heterogeneous
Exascale systems

WP2 Runtime Resource Management
Infrastructure

D2.4 RECIPE Application Programming Interface

http://www.recipe-project.eu

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No

801137

http://www.recipe-project.eu

Grant Agreement No.: 801137
Deliverable: D2.4 RECIPE Application Programming Inter-
face

Project Start Date: 01/05/2018 Duration: 36 months
Coordinator: Politecnico di Milano, Italy

Deliverable No: D2.4
WP No: 2
WP Leader: Giuseppe Massari
Due date: 31/10/2019
Delivery date: 31/10/2019

Dissemination Level:

PU Public Use X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Ser-

vices)
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 2

http://www.recipe-project.eu

DOCUMENT SUMMARY INFORMATION

Project title: REliable Power and time-ConstraInts-aware Predictive
management of heterogeneous Exascale systems

Short project name: RECIPE
Project No: 801137
Call Identifier: H2020-FETHPC-2017
Thematic Priority: Future and Emerging Technologies
Type of Action: Research and Innovation Action
Start date of the
project:

01/05/2018

Duration of the
project:

36 months

Project website: http://www.recipe-project.eu

D2.4 RECIPE Application Programming Interface

Work Package: WP2 Runtime Resource Management Infrastructure
Deliverable number: D2.4
Deliverable title: RECIPE Application Programming Interface
Due date: 31/10/2019
Actual submission
date:

31/10/2019

Editor: G. Agosta
Authors: G. Agosta, A. Cilardo, G. Massari, F. Reghenzani
Dissemination Level: PU
No. pages: 57
Authorized (date): 31/10/2019
Responsible person: W. Fornaciari
Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment
v.0.1 16/10/2019 G. Agosta First draft
v.0.2 19/10/2019 G. Agosta Python API for DSL
v.0.3 23/10/2019 A. Cilardo Heterogeneous part added
v.0.4 24/10/2019 G. Massari Runtime management API
v.0.5 24/10/2019 G. Agosta Executive summary
v.1.0 31/10/2019 G. Massari Overall revision after BSC review
v.1.1 02/11/2019 G. Massari Final improvements

Quality Control:

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 3

http://www.recipe-project.eu
http://www.recipe-project.eu

Who Date
Checked by internal reviewer BSC 30/10/2019
Checked by WP Leader Giuseppe Massari 31/10/2019
Checked by Project Technical
Manager

G. Agosta 31/10/2019

Checked by Project Coordinator W. Fornaciari 31/10/2019

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 4

http://www.recipe-project.eu

COPYRIGHT

c©Copyright by the RECIPE consortium, 2018-2020.

This document contains material, which is the copyright of RECIPE consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 801137 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

RECIPE is a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 801137. Please see http://www.recipe-
project.eu for more information.

The partners in the project are Politecnico di Milano (POLIMI), Universitat Politècnica de
València (UPV), Centro Regionale Information Communication Technology scrl (CeRICT),
École Polytechnique Fédèrale de Lausanne (EPFL), Barcelona Supercomputing Center (BSC),
Poznan Supercomputing and Networking Center (PSNC), IBT Solutions S.r.l. (IBTS), Cen-
tre Hospitalier Universitaire Vaudois (CHUV). The content of this document is the result of
extensive discussions within the RECIPE c©Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The infor-
mation contained in this document is provided by the copyright holders ”as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the RECIPE
collaboration, including the copyright holders, or the European Commission be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of the information
contained in this document, even if advised of the possibility of such damage.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 5

http://www.recipe-project.eu
http://www.recipe-project.eu
http://www.recipe-project.eu

Contents

1 Runtime Managed Programming Models 8
1.1 Adaptive Execution Model (AEM) . 8

1.1.1 Application requirements . 11
1.1.2 Run-time negotiation . 12

1.2 MANGOLIBS . 13
1.2.1 Application Architecture . 14
1.2.2 C++ API . 15
1.2.3 C Language API . 21
1.2.4 Sample Application: GIF FIFO . 24
1.2.5 Application Requirements . 28
1.2.6 Emulation Layer . 31

1.3 RECIPE Application Requirements . 31

2 Domain Specific Languages for RECIPE 33
2.1 Python mangolibs API . 33

2.1.1 Example Application . 37
2.2 OpenCL mangolibs API . 38

2.2.1 Example Application . 40
2.3 Dynamic Compilation of Kernels . 41

3 Heterogeneous Acceleration Programming 43
3.1 Implementation of OpenCL for the nu+ GPU-like programmable core 44

3.1.1 OpenCL model on nu+ . 44
3.1.2 Designing OpenCL Host-Runtime on nu+ 47
3.1.3 Compilation Support to OpenCL C Kernels 48

3.2 HLS-targeted OpenCL programming interface 51
3.2.1 OpenCL kernel design flow for FPGAs 52
3.2.2 Improving Performance of OpenCL kernels 53

4 Conclusions 57

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 6

http://www.recipe-project.eu

Executive Summary

This deliverable reports the progress of Task2.3 concerning the application programming inter-
face developed for the RECIPE project. RECIPE leverages the existing MANGO API (and its
mangolib implementation) as the baseline for programming the heterogeneous accelerators.
However, we also offer a more lightweight alternative in the Adaptive Execution Model. We
also extend the MANGO API with Python bindings to provide the basis for the exploration of
Domain Specific Language (DSL) features. Finally, for low-level accelerator programming, we
provide OpenCL support to program the configurable GPU-like softcore nu+, which is part of
the MANGO hardware unit portfolio, and evaluate the use of OpenCL-based HLS to generate
custom accelerators.

RECIPE Technology Baseline Advance Status
Runtime management
interface

mangolibs (C/C++
API)

Adaptive Ex-
ecution Model
(C/C++/Python)

Available

Domain Specific Lan-
guage feature explo-
ration

mangolibs (C/C++
API)

Python API extended
with dynamic recipe
manipulation

Baseline Python
API defined and
implemented

Kernel compilation Static kernel compila-
tion only

Dynamic kernel com-
pilation

Work in progress

Programming support
for nu+

C only OpenCL Work in progress

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 7

http://www.recipe-project.eu

1 Runtime Managed Programming Models

As already introduced in D2.1, for an effective management of HPC workload we think that a
suitable integration between programming models and run-time management layers can play a
key role. In this section, we provide an overview of the programming models we aim at using, for
the implementation of the application use cases the RECIPE project is targeting. We introduce
the Abstract Execution Model and the MANGO API. Both the programming models come from
the development effort carried out during previous EU funded projects (FP7 2PARMA, FP7
HARPA and H2020 MANGO). They are characterized by a common feature: the integration of
the application execution and lifecycle with the resource management actions.

Moreover, it is worth to specify that both the programming models are intended for parallel
applications, running on a single local node of the HPC system. The usual Message Passing
Interface (MPI) can be then exploited as complementary and additional choice, in order to
scaling the performance, by distributing data and computation effort over multiple nodes of the
HPC infrastructure.

1.1 Adaptive Execution Model (AEM)

This is the first programming model on which the BarbequeRTRM was based on [3]. It has been
proposed for the implementation of run-time adaptive applications classes. This AEM comes
with the resource management framework described later (the Barbeque Run-Time Resource
Manager) and it is provided via the so called Application RunTime Library (RTLib). The library
includes functions and C++ class to enable the interaction between the application and the
resource manager.

From the implementation standpoint, the Adaptive Execution Model (AEM) consists of imple-
menting a C++ class, derived from the base class BbqueEXC, and include an instance of such a
class in the application code, as shown in the example in Listing 1.

Listing 1: Definition of a BbqueEXC derived class

1 #include "bbque/bbque_exc.h"

2 #include "bbque/rtlib.h"

3
4 c la s s MyAppEXC: public BbqueEXC {

5 public:
6 MyAppEXC(

7 std:: string const & name ,

8 std:: string const & recipe ,

9 RTLIB_Services_t * rtlib);

10 ~MyAppEXC ();

11
12 private :
13 RTLIB_ExitCode_t onSetup();
14 RTLIB_ExitCode_t onConfigure(int8_t awm_id);

15 RTLIB_ExitCode_t onRun();

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 8

http://www.recipe-project.eu

16 RTLIB_ExitCode_t onMonitor();
17 RTLIB_ExitCode_t onSuspend();
18 RTLIB_ExitCode_t onRelease();
19 };

The class represents an Execution Context, and is characterized by specific member functions
to override. These functions, also shown in the boxes in Figure 1, are characterized by an on-

prefix in the name – an approach similar to the one already known for programming Android
systems. The implementation must in fact follow a given semantic, since the function execution
is what we expect the application performs when entering a specific state. We can summarize
the semantic of each member function as follows:

onSetup: Initialization code.

onConfigure: Called when the resource allocation changes. The application can configure itself
according to the set of resources actually assigned.

onRun: The core of the algorithm. The part of the application performing “useful” computa-
tion.

onMonitor: Called after each onRun execution to check the current performance and send a
feedback to the resource manager.

onRelease: Explicit deallocations (e.g. dynamic memory objects) and release.

Listing 2: Example of C++ main() function of an integrated application. The MyAppEXC class is
derived from BbqueEXC.

1 int main(int argc , char *argv [])

2 {

3 RTLIB_Services_t * rtlib;

4 RTLIB_Init("MyApp", &rtlib);

5
6 MyAppEXC * pexc = std:: make_shared <MyAppEXC >(

7 "MyApp", "MyApp.recipe", rtlib);

8 i f (!pexc ->isRegistered ())

9 return RTLIB_ERROR;

10
11 pexc ->Start ();
12 pexc ->WaitCompletion();
13
14 return EXIT_SUCCESS;

15 }

In Listing 2 we can seen a minimal main function of AEM integrated application.

The main function must typically initialize the library by calling the RTLIB Init() function and
then instantiate an object of derived class type. This automatically spawns a control thread, in
charge of performing the member function calls, according to the status messages coming from
the resource manager.

After initializing the library, the application can instantiate an execution context. To do that,
in the example the object of class MyAppEXC is created. The class is derived from BbqueEXC.
If everything goes fine (line 8), the managed execution can be started by calling the Start()

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 9

http://www.recipe-project.eu

Figure 1: Adaptive Execution Model of BarbequeRTRM managed applications.

member function. This spawns the RTLib control thread and notifies the BarbequeRTRM of
the application start, while the main() thread function will wait for the end of the managed
execution (WaitCompletion()).

Therefore, on the derived class side, the AEM control thread will invoke the onSetup function
for initialization purpose, before waiting for the BarbequeRTRM to assign resources. When this
happens the onConfigure is called, so that the application can adapt its core algorithm to the
actual availability of assigned system resources. Here some application-specific tuning actions
can be performed.

Once the application is configured, the control thread can start a loop, in which member func-
tions onRun and onMonitor are called in sequence. The loop goes on until the overall resource
allocation remains unchanged. When the BarbequeRTRM performs a new run of the resource
management policy, and this determines changes in the allocation of resources, the RTLib con-
trol thread is notified, such that the onConfigure function is called again. Then the regular
execution of the application can be resumed.

The application terminates when a given exit condition is verified. In such a case, a specific
exit code is returned by the onRun function, to notify the control thread and jump into the
onRelease before terminating.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 10

http://www.recipe-project.eu

Application requirements

The current version of the BarbequeRTRM allows the application developer to suggest to the
resource manager the optimal set of resource assignment configurations [5]. We refer to these
configurations by using the expression Application Working Modes (AWM). For each working
mode we typically have two mandatory pieces of information to specify:

1. The required hardware resources;

2. The expected performance level due to the assignment of the required resources (value).

From the application side, in fact, the outcome of a BarbequeRTRM resource allocation policy
generally consists of the assignment of an AWM, with the consequent mapping of the resource
requests onto the available system resources. Depending on the specific policy implementation,
the assigned AWM can be built on-the-fly at runtime or it can be selected from a list provided
by the developer. The latter case requires the developer to include this list in what is called the
application Recipe, i.e. an XML file similar to Listing 3.

Listing 3: Example of application Recipe.

1 <?xml version="1.0"?>

2 <BarbequeRTRM recipe_version="0.8">

3 <application priority="4">

4 <platform id="org.linux.cgroup" hw="mango">

5 <awms>

6 <awm id="0" value="1" config -time="150">

7 <resources >
8 <cpu>

9 <pe qty="100"/>

10 <mem qty="2" units="MB" />

11 </cpu>

12 <net qty="50" units="Kbps">

13 </ resources >
14 </awm>

15 ...

16 <awm id="2" value="4" config -time="150">

17 <resources >
18 <cpu>

19 <pe qty="200"/>

20 <mem qty="10" units="MB"/>

21 </cpu>

22 <acc>

23 <pe qty="4"/>

24 </acc>

25 <net qty="100" units="Kbps">

26 </ resources >
27 </awm>

28 </awms>

29 </platform>

30 </ application >

31 </BarbequeRTRM >

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 11

http://www.recipe-project.eu

The file is usually located under a specific installation sub-directory of the BarbequeRTRM
framework ($(ROOT DIR)/etc/bbque/recipes/) and must necessarily end with .recipe exten-
sion. To specify the recipe file associated to the starting execution context, the second argument
of the BbqueEXC constructor is used, as shown in Listing 2. In the example provided in Listing 3,
we assigned to the application a static priority level equal to 4, (where 0 is the highest priority
value we can assign). This is an information that resource allocation policy should typically take
into account.

The platform section then identifies the target system we are referring to. In this case, a system
running a Linux OS (id=‘‘org.linux.cgroup’’) whose architecture is better qualified by the
attribute hw=‘‘mango’’. The set of Application Working Modes (amws) is thus platform-specific.
Therefore the Recipe format allows the developer to include several platform sections into a single
Recipe file. The proper section will be parsed at the application start-time depending on the
actual system.

Looking at each Application Working Mode definition, we can specify several attributes: 1) the
progressive numeric identifier (id); 2) an optional descriptive name; 3) the aforementioned per-
formance value; 4) the configuration time profiled, in milliseconds (config-time). Specifically,
the last two attributes provide input data to the resource allocation policy. The value is indeed
a number expressing the level of performance or QoS, while the config-time keeps track of the
time overhead experienced to adapt the application to the related AWM assignment.

The <resources> subsections then, make up the part of the Recipe in charge of reporting the
resource requirements of each AWM. In the example, such requirements are expressed in terms
of CPU bandwidth time quota (pe under cpu), amount of memory (mem), number of accelerator
cores (pe under acc), and network bandwidth (net). Concerning the specific case of the CPU
time, the values reported must be read as percentages. Therefore, values greater than 100 simply
expresses the usage requirement of more than one CPU core. Generally, a good practice would
be to write an application Recipe through a suitable profiling of the application execution, under
different resource assignment configurations.

Run-time negotiation

We shown how the AEM drives the execution of applications by invoking onSetup, onConfigure,
onRun, onMonitor, onSuspend, and onRelease callbacks, following the proposed execution flow.
This run-time managed execution of the application allows us to perform some kind of perfor-
mance monitoring at RTLib level.

In this regard, the library exposes some functions through which the application can:

• Be aware of the current resource allocation (resource awareness)

• Express its Quality of Service goals (runtime profiling)

• Assess its current performance (performance awareness)

Resource awareness. Applications can be aware of the amount of currently allocated resources.
These APIs are usually used by applications in the onConfigure method. However, they can be

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 12

http://www.recipe-project.eu

anywhere in the application code. Allocation data is stored locally to the RTLib. It is updated
each time the resource manager changes the resource allocation.

RTLIB ExitCode t GetAssignedResources (RTLIB ResourceType t r type, int32 t & r amount);

Get the amount of assigned resources of type r type. Available resource types are:
RTLIB ResourceType::CPU: number of cores
RTLIB ResourceType::PROC NR: number of processors
RTLIB ResourceType::PROC ELEMENT: CPU bandwidth
RTLIB ResourceType::MEMORY: amount of memory
RTLIB ResourceType::GPU: amount of GPUs
RTLIB ResourceType::ACCELERATOR: amount of cores in accelerators

The amount of resources is written in r amount.

Runtime Profiling. Applications can declare their performance goal in terms of CPS goal, i.e.,
throughput. CPS (Cycles Per Second) is the number of processing cycles (i.e. onRun invocations)
completed in a second. The goal value is not forwarded immediately to the resource manager.
Conversely, it is locally used by the RTLib, which constantly monitors the current performance
and notifies the resource manager only when the measured CPS does not match the declared CPS
goal, thus minimizing communication overheads. The current distance between instantaneous
and goal CPS is defined as goal gap. It is computed as follows:

goal gap =
CPScurrent − CPSgoal

CPSgoal

(1)

For example, an application whose goal is 2.0 CPS and whose current CPS is 1.8 has a goal gap
of 1.8−2−0

2.0
= −0.10, i.e. is 10% too slow.

RTLIB ExitCode t SetCPSGoal (float cps min);

RTLIB ExitCode t SetCPSGoal (float cps min, float cps max);

Set the desired performance in terms of Cycles Per Second (CPS). The resource manager will be auto-
matically notified when the instantaneous CPS will be lower than cps min or, if declared, higher that
cps max.
RTLIB ExitCode t SetGoalGap(int goal gap);
Explicitly set a Goal Gap to the resource manager. The goal gap must be computed using Equation 1.
RTLIB ExitCode t SetCPS(float cps);
Force maximum CPS to be cps. If the application is faster than that, maximum CPS is enforced by the
RTLib using sleep. If used along with the SetCPSGoal function, after the sleep the resource manager is
notified that the application is too fast, and will reduce allocated resources accordingly.
RTLIB ExitCode t SetCTimeUs(uint32 t us);
The same as SetCPS, but with cycle time (1

CPS).

1.2 MANGOLIBS

mangolibs is a runtime support library that allows programmers to develop parallel appli-
cations leveraging heterogeneous accelerators. Applications developed with mangolibs do not
need to explicitly manage the resources, which are instead managed by the Barbeque Runtime

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 13

http://www.recipe-project.eu

Resource Manager, a state of the art open source resource manager. Thus, system level metrics
such as resource utilisation and power can be optimised while preserving the quality of service
requested by the application. Furthermore, mangolibs can be easily extended to support new
heterogeneous programmable accelerators, making it a tool for the exploration of heterogeneous
architectures in the context of High Performance Computing (HPC).

Th MANGO programming model was defined and implemented by the MANGO consortium [4].
The definition is publicly available through the deliverables of the MANGO project [2, 1]. It is
implemented as a set of open source libraries 1, natively defined in C++, but with C bindings
available out of the box. We summarize here the application architecture for ease of reference.

Application Architecture

mangolibs defines three main classes of objects that are meant to reside on the accelerator
cluster, namely kernels, buffers and events.

Kernel objects represent a fragment of code, encapsulated as a C/C++ function, that will run
on an accelerator. The kernel is defined in a separate compilation unit, using a mango kernel

keyword to denote the entry point of the compilation unit. Each kernel can receive as parameters
either pointers to buffers or events, or scalar values (or a mix of both). Multiple kernels may
be defined by an application to be run concurrently on different compute units. Each kernel
may have multiple implementations targeting different types of compute units. Each kernel is
associated with a completion event that can be waited upon from the host to suspend execution
while waiting for the kernel to complete.

Buffer objects represent a region of memory that can be accessed by a given set of kernels. An
associated event can be used to notify read or write actions on the buffer. Buffers are accessed
directly (via their memory address in the compute unit’s address space) from the accelerator,
and via write and read primitives on the host side. Standard buffers perform host-accelerator
data transfer synchronously, but FIFO buffers are also provided to perform asynchronous data
transfer in bursts.

Events are mapped to special memory regions on the accelerator cluster that are accessed in
mutual exclusion. They allow synchronization among concurrent kernels and with the host.

On the host side, mangolibs also defines a context that allows to encapsulate the information
about the application that need to be passed to the resource manager (in particular, the recipe,
that is the set of configurations and requirements in terms of compute units, memory, and
bandwidth, that the application needs to reach a specific operating point) and to ask for resource
allocation and deallocation. The kernels, buffers and events used by an application are passed
to the context in the form of a task graph, so that the resource manager can consider all the
elements of the application in the frame of the flow of data among them.

This is the biggest difference with respect to programming models like OpenCL. The mangolibs
API in fact, simply requires that the developers would build a task-graph based description of
the application, by using suitable library functions. An example of task-graph is shown in Figure
2. The nodes can represent a task or a memory buffer, properly placed for data exchanging.

1https://bitbucket.org/mango developers/mangolibs

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 14

https://bitbucket.org/mango_developers/mangolibs
http://www.recipe-project.eu

Figure 2: Task-graph based representation of an application.

Thanks to a tight integration of the MANGO runtime with the local resource manager (the
BarbequeRTRM), the application developer is relieved from the burden of taking care of resource
mapping. This means that the tasks will be offloaded to specific computing units, and the buffers
will be allocated to memory nodes, in a transparent manner and according to the local resource
manager policy.

One of the goals of this programming model is therefore to abstract both the local resource
manager and the low-level access to the hardware. Therefore, the mangolibs implementation
relies on two internal APIs: one towards the hardware abstraction layer, and one towards the
runtime resource manager. The libHN API allows the mangolibs to interact with the allocated
resources, by loading and running kernels as well as writing and reading from memory objects
(buffers and events). The runtime library API allows mangolibs to interact with the resource
manager, performing allocation and deallocation requests, and notifying relevant events (e.g.,
kernel completion).

The current implementation of the programming model comes with the MANGO library (lib-
mango) and provides to the developer a C and a C++ API, as described as it follows.

C++ API

The C++ API is the main implementation of the libmango. The library provides access to
both the two low-level library implementations: one targeting the hnlib, described in D2.1, and
one targeting an emulated accelerator device, which is in turn implemented as a set of Linux
processes (one per emulated kernel).

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 15

http://www.recipe-project.eu

The main class mango::BBQContext represents the interface with the underlying runtime frame-
work. Any MANGO application must initialize one, and only one, object of this class to be
recognized by the resource manager.

mango::BBQContext
• BBQContext (std::string const & name="app", std::string const

& recipe="generic")
– Performs the necessary internal initialization of libmango and underlying li-

braries (including the connection with libhn).

• virtual mango exit code t resource allocation (TaskGraph &tg)

noexcept override
– Performs the resource allocation of the specified task graph of the application.

This function is blocking until Barbeque assigns the resources.

• virtual mango exit code t resource deallocation (TaskGraph &tg)

noexcept override
– Deallocates the previous assigned resources.

• virtual std::shared ptr< Event > start kernel (std::shared ptr<
Kernel > kernel, KernelArguments &args, std::shared ptr< Event >
e=nullptr) noexcept override
– Launches a given kernel with the given parameters. This method must be called

after a successful allocation of the resources. The event parameter can be used to
retrieve the termination event of the kernel automatically created.

An application is composed by a non-empty set of kernels. These kernels are represented with
instances of the following class. Each kernel is then run, according to the resource manager
decision, onto a computing resource (e.g., a HW accelerator) located on FPGA.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 16

http://www.recipe-project.eu

mango::Kernel
• Kernel (mango id t kid, KernelFunction ∗k, std::vector< mango id t

> buffers in, std::vector< mango id t > buffers out) noexcept
– The class constructor. A kernel is defined over a numerical id, a KernelFunction

and by the sets of input and output buffers.

• bool operator== (const Kernel &other) const noexcept

• bool is a reader (mango id t buffer id) const noexcept
– Return true if the kernel is a reader of the buffer provided as input. False other-

wise.

• bool is a writer (mango id t buffer id) const noexcept
– Return true if the kernel is a writer of the buffer provided as input. False other-

wise.

• std::shared ptr< KernelCompletionEvent > get termination event ()

noexcept

• std::vector< std::shared ptr< Event > > & get task events ()

noexcept

• const std::vector< std::shared ptr< Event > > & get task events

() const noexcept

• mango addr t get virtual address () const noexcept
– Return the virtual address associated to the kernel binary image.

• mango addr t get physical address () const noexcept
– Return the physical address associated to the kernel binary image.

• mango id t get mem tile () const noexcept
– Return the memory node associated to the kernel binary image, if the target system

included more than one memory on the platform.

• std::shared ptr< Unit > get assigned unit () const noexcept
– Return the type of processing unit assigned to the kernel.

• const KernelFunction ∗ get kernel () const noexcept
– Return the associated kernel function.

• mango id t get id () const noexcept

• std::vector< mango id t >::const iterator buffers in cbegin ()

const noexcept

• std::vector< mango id t >::const iterator buffers in cend ()

const noexcept

• std::vector< mango id t >::const iterator buffers out cbegin ()

const noexcept

• std::vector< mango id t >::const iterator buffers out cend ()

const noexcept

• void set thread count (int thread count) noexcept
– Set the number of threads of this kernel. This information will be provided to the

resource manager.

• int get thread count () const noexcept
– Get the number of threads of this kernel.

Each kernel can write from or read to a buffer local to the processing unit. These buffers are
memory portions usually shared among different cores of the processing unit and they are rep-
resented by instances of the following class:

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 17

http://www.recipe-project.eu

mango::Buffer
• Buffer (mango id t bid, mango size t size, const std::vector< mango id t >

&kernels in={}, const std::vector< mango id t > &kernels out={}) noexcept
• virtual std::shared ptr< const Event > write (const void

∗GN buffer, mango size t global size=0) const noexcept
– Memory transfer from general-purpose node (GN) to the FPGA (heterogeneous

node (HN)) in DIRECT mode.

• virtual std::shared ptr< const Event > read (void ∗GN buffer,

mango size t global size=0) const noexcept
– Memory transfer from heterogeneous node (HN) to general-purpose node (GN) in

DIRECT mode.

• bool isReadByHost ()
– Check whether the buffer is read by the host.

• bool isReadBy (uint32 t kid) const noexcept
– Check whether the buffer is read by a given kernel.

• bool operator== (const Buffer &other) const noexcept

• mango exit code t resize (mango size t size) noexcept

• mango id t get id () const noexcept
– Get the event identifier.

• mango id t get size () const noexcept
– Get the size of th buffer.

• mango size t get phy addr () const noexcept
– Get the physical address of the event. This is not an actual physical address, but

it represents an offset in the tile register.

• mango id t get mem tile () const noexcept
– Get the identifier of the memory tile assigned.

• void set phy addr (mango size t addr) noexcept
– Get the physical address of the event. This is not an actual physical address, but

it represents an offset in the tile register.

• void set mem tile (mango id t tile) noexcept
– Get the identifier of the memory tile assigned.

• std::shared ptr< Event > get event () noexcept
– It returns the pointer to the event.

• const std::vector< mango id t > & get kernels in () const

noexcept

• const std::vector< mango id t > & get kernels out () const

noexcept

To build the kernel object the KernelFunction object must be also set. This class represents an
available binary for a specific architecture for the kernel.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 18

http://www.recipe-project.eu

mango::KernelFunction
• mango exit code t load (const std::string &kernel file,

mango unit type t unit, mango file type t type) noexcept
– Load a new kernel image.

• std::string get kernel version (mango unit type t type) const
– Given a Mango unit type, it returns the matching filename.

• void set kernel size (mango unit type t type, mango size t size)

• mango size t get kernel size (mango unit type t type) const
– Given a Mango unit type, it returns the matching file size.

• std::map< mango unit type t, mango size t >::const iterator cbegin

() const noexcept

• std::map< mango unit type t, mango size t >::const iterator cend

() const noexcept

• bool is loaded () const noexcept

• size t length () const noexcept

mango::Arg
• mango size t get value () const noexcept

• mango size t get size () const noexcept

• mango id t get id () const noexcept

• void set value (mango size t value) noexcept

An object instance of the Event instead represents a generic event. It can represent a kernel
event, e.g. the end of a kernel execution, a buffer event, e.g. the finishing of a write or read of
a shared memory area, or a custom event directly managed and triggered by the application.
The first two are generated by libmango and obtained through appropriate function calls from
classes Kernel and Buffer.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 19

http://www.recipe-project.eu

mango::Event
• Event (mango id t kernel id) noexcept

• Event (const std::vector< mango id t > &kernel id in, const

std::vector< mango id t > &kernel id out) noexcept

• virtual void wait state (uint32 t state) const noexcept

• virtual uint32 t wait () const noexcept
– High level wait primitive.

• virtual void write (uint32 t value) const noexcept
– Set an event value.

• uint32 t read () const noexcept
– Read and reset an event read value from the TILEREG register associated with

event and replace it with 0. This one should deprecated.

• bool operator== (const Event &other) const noexcept

• mango id t get id () const noexcept
– Get the event identifier.

• mango size t get phy addr () const noexcept
– Get the physical address of the event. This is not an actual physical address, but

it represents an offset in the tile register.

• void set phy addr (mango size t addr) noexcept
– Get the physical address of the event. This is not an actual physical address, but

it represents an offset in the tile register.

• void set fifo task (std::unique ptr< std::thread > task) noexcept
– Set a callback function for write/read data asynchronously.

• const std::vector< mango id t > & get kernels in () const

noexcept

• const std::vector< mango id t > & get kernels out () const

noexcept

• template<typename A , typename B > void set callback (A

bbq notify callback, B obj, mango id t id) noexcept

Instances of Kernel, Buffer, and Event classes are then grouped into a task graph. This data
structure is built using the appropriate class:

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 20

http://www.recipe-project.eu

mango::TaskGraph
• TaskGraph (std::initializer list< std::shared ptr< Kernel >>
lkernels, std::initializer list< std::shared ptr< Buffer >>
lbuffers, std::initializer list< std::shared ptr< Event >>
levents={}) noexcept

– Define a task graph.

• TaskGraph (int k, int b, int e,...)
– Define a task graph.

• ∼TaskGraph ()
– Destroy a task graph.

• TaskGraph & operator+= (std::shared ptr< Kernel > kernel)
– Add a kernel to the task graph.

• TaskGraph & operator-= (std::shared ptr< Kernel > kernel)
– Remove a kernel from the task graph.

• TaskGraph & operator+= (std::shared ptr< Buffer > buffer)
– Add a buffer to the task graph.

• TaskGraph & operator-= (std::shared ptr< Buffer > buffer)
– Remove a buffer from the task graph.

• TaskGraph & operator+= (std::shared ptr< Event > event)
– Add an event to the task graph.

• TaskGraph & operator-= (std::shared ptr< Event > event)
– Remove an event from the task graph.

• std::shared ptr< Kernel > get kernel by id (mango id t id)

noexcept

• std::vector< std::shared ptr< Kernel > > & get kernels ()

noexcept

• std::vector< std::shared ptr< Buffer > > & get buffers ()

noexcept

• std::vector< std::shared ptr< Event > > & get events () noexcept

C Language API

The C language API is a wrapper around the C++ API that is provided both for compatibility
with C code and for compatibility with the early version of the library, which was developed in
C.

All the data types in the function prototypes have been made opaque using specific typedef

types. This hides to the application some specific type of the machine, such as the size of the
memory addresses. In the current MANGO implementation, the used types are mostly uint32 t,
due to the addressing size that is of 32-bit.

We grouped the API in 8 groups: initialization and shutdown, kernel loading, task graph defini-
tion, task graph registration, resource allocation, kernel launching, synchronization primitives,
and data transfer.

The first group regards the initialization and the shutdown. As the name suggests, it basically
wraps the BBQContext initialization functions.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 21

http://www.recipe-project.eu

Initialization and shutdown
• mango exit t mango init (const char ∗application name, const char ∗recipe)

– Initialize runtime library.

• mango exit t mango release ()
– Shutdown runtime library.

The second logical step for the application is to provide the information about the binaries
available for the kernels. The following functions are mainly a wrap of the KernelFunction class.

Kernel loading
• kernelfunction ∗ mango kernelfunction init ()

– Initialize a kernel function data structure.

• mango exit t mango load kernel (const char ∗kname, kernelfunction ∗kernel,
mango unit type t unit, filetype t)

– Load a kernel binary of a targer architetecture, ready for offloading.

Then, the task graph has to be built. Thus all the mango register * allows the developer to
create all the task graph components.

Registration of task graph components
• mango kernel t mango register kernel (uint32 t kernel id, kernelfunction ∗kernel,

unsigned int nbuffers in, unsigned int nbuffers out,...)
– Register a kernel to add to the task-graph.

• void mango deregister kernel (mango kernel t kernel)
– De-register the kernel to remove from the task-graph.

• mango buffer t mango register memory (uint32 t buffer id, size t size,
mango buffer type t mode, unsigned int nkernels in, unsigned int nker-
nels out,...)

– Register a memory region to use as a buffer for communication.

• void mango deregister memory (mango buffer t mem)
– Deallocate registered memory.

• mango event t mango register event (unsigned int nkernels in, unsigned int nker-
nels out,...)

– Register a synchronization event (semaphore?) that will be used on the heteroge-
neous node side (FPGA)

• void mango deregister event (mango event t event)
– Deallocate registered event.

• mango event t mango get buffer event (mango buffer t buffer)
– Get an event from the corresponding buffer. This function is needed to keep

mango buffer t opaque in the C interface.

Once all the components of the task graph are created, it is necessary to specify the structure of
the task graph, i.e. the relation between kernel, buffers, and events. This is done thanks to the
following API.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 22

http://www.recipe-project.eu

Task graph definition
• mango task graph t ∗ mango task graph vcreate (mango kernel t ∗∗kernels,

mango buffer t ∗∗buffers, mango event t ∗ ∗ events)
– Define a task graph.

• mango task graph t ∗ mango task graph create (int k, int b, int e,...)
– Define a task graph.

• void mango task graph destroy (mango task graph t ∗task graph)
– Destroy a task graph.

• void mango task graph destroy all (mango task graph t ∗task graph)
– Destroy a task graph and deregister all of its components.

• mango task graph t ∗ mango task graph add kernel (mango task graph t ∗tg,
mango kernel t ∗kernel)

– Add a kernel to the task graph.

• mango task graph t ∗ mango task graph remove kernel (mango task graph t
∗tg, mango kernel t ∗kernel)

– Remove a kernel from the task graph.

• mango task graph t ∗ mango task graph add buffer (mango task graph t ∗tg,
mango buffer t ∗buffer)

– Add a buffer to the task graph.

• mango task graph t ∗ mango task graph remove buffer (mango task graph t
∗tg, mango buffer t ∗buffer)

– Remove a buffer from the task graph.

• mango task graph t ∗ mango task graph add event (mango task graph t ∗tg,
mango event t ∗event)

– Add an event to the task graph.

• mango task graph t ∗ mango task graph remove event (mango task graph t ∗tg,
mango event t ∗event)

– Remove an event from the task graph.

After the creation of the task graph, the allocation of the resources is requested to the resource
manager, in our case BarbequeRTRM, using the following functions:

Resource Allocation
• mango exit t mango resource allocation (mango task graph t ∗tg)

– Resource allocation for the task-graph.

• void mango resource deallocation (mango task graph t ∗tg)
– Resource de-allocation for the task-graph.

At this point, the resources are allocated and the kernel execution can be started. This is done
via the following functions:

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 23

http://www.recipe-project.eu

Kernel launch
• mango arg t ∗ mango arg (mango kernel t kernel, const void ∗value, size t size,

mango buffer type t t)
– Build an argument parameter.

• mango args t ∗ mango set args (mango kernel t kernel, int argc,...)
– Set up the arguments for a kernel.

• mango event t mango start kernel (mango kernel t kernel, mango args t ∗args,
mango event t event)

– Run a kernel.

During the execution of the kernels, the following functions enable the use of synchronization
registers, i.e. events from the application point of view. These functions enable the GN-side
threads to synchronize with the kernels running on the HN.

Synchronization primitives
• void mango wait (mango event t e)

– High level wait primitive.

• void mango wait state (mango event t e, uint32 t state)
– High level wait primitive.

• void mango write synchronization (mango event t event, uint32 t value)
– Initialize an event.

• uint32 t mango read synchronization (mango event t event)
– Read and reset an event.

• uint32 t mango lock (mango event t e)
– Lock and read an event

Finally, the following functions provide the option to exchange data from the GN to the HN and
vice versa.

GN-HN data transfer
• mango event t mango write (const void ∗GN buffer, mango buffer t HN buffer,

mango communication mode t mode, size t global size)
– Memory transfer from GN to HN.

• mango event t mango read (void ∗GN buffer, mango buffer t HN buffer,
mango communication mode t mode, size t global size)

– Memory transfer from HN to GN.

Sample Application: GIF FIFO

In this subsection, we discuss the sample application “GIF FIFO” included in the release of the
MANGO software2. The application performs a simple scaling of an input image in GIF format.
Listing 4 shows the usage of the C++ version of the MANGO API. It represents the part of
the application running on a general-purpose node, i.e. CPU, and thus linked to the MANGO
programming model library.

2https://bitbucket.org/mango developers/mangolibs

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 24

http://www.recipe-project.eu

As previously introduced, a mandatory initial step of the application execution is the initializa-
tion of the context. This is performed at line 9, by instancing the object BBQContext, providing
the name of the application and the recipe file as arguments (see Section 1.2.5).

Listing 4: main() function of the GIF FIFO sample application. This is the host-side of the
application, running on the CPUs of the general-purpose node (GN)
1
2 int main () {

3 // Load input image ...

4 // ...

5 int SX =512;

6 int SY =512;

7
8 // Initialization

9 context = new mango :: BBQContext("gif_animation", "gif_animation");

10
11 // Kernel objects

12 auto kf_scale = new mango :: KernelFunction ();

13 kf_scale ->load(kernel_binary_path_cpu ,

14 mango:: UnitType ::GN , mango :: FileType :: BINARY);

15 kf_scale ->load(kernel_binary_path_peak ,

16 mango:: UnitType ::PEAK , mango :: FileType :: BINARY);

17 // ...

18
19 // Task graph construction

20 auto kscale = context ->register_kernel(KSCALE , kf_scale , {B1}, {B2});

21 auto b1 = context ->register_buffer(

22 B1 , SX*SY*3* s i z eo f (Byte), {}, {KSCALE}, mango :: BufferType ::FIFO);

23 auto b2 = context ->register_buffer(

24 B2 , SX*2*SY*2*3* s i z eo f (Byte), {KSCALE}, {}, mango :: BufferType ::

FIFO);

25
26 // Resource allocation

27 tg = new mango :: TaskGraph ({ kscale }, { b1, b2 });

28 context ->resource_allocation (*tg);

29
30 // Execution setup

31 auto argB1 = new mango:: BufferArg(b1);

32 auto argB2 = new mango:: BufferArg(b2);

33 auto argSX = new mango::ScalarArg < int >(SX);

34 auto argSY = new mango::ScalarArg < int >(SY);

35 auto argE1 = new mango:: EventArg(b1 ->get_event ());

36 auto argE2 = new mango:: EventArg(b2 ->get_event ());

37 argsKSCALE = new mango:: KernelArguments(

38 { argB2 , argB1 , argSX , argSY , argE1 , argE2 }, kscale);

39
40 // FIFO data transfer

41 b1->write(in, 4*SX*SY*3* s i z eo f (Byte));
42 b2->read(out , 4*SX*2*SY*2*3* s i z eo f (Byte));
43
44 // Kernel execution

45 auto e3 = context ->start_kernel(kscale , *argsKSCALE);

46 e3->wait();

47
48 // Deallocation and tear -down

49 context ->resource_deallocation (*tg);

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 25

http://www.recipe-project.eu

50 //

51 // Save output image ...

52 // ...

53 return 0;

54 }

We can then proceed with the instantiation of a kernel object for each application task (line
11). In this case, the application includes only the task to perform the scaling of the input
image (kf scale). The object is hence filled with references to the executable binaries of all the
architectures for which it has been pre-compiled (in this case, CPU and PEAK).

The next step is, the construction of the task-graph representation. We start from registering
the kernels (line 19), by specifying an integer id (macro KSCALE), the kernel object, and the
lists of input and output buffers (ids). Similarly, the registration of the buffers, with the size,
kernels reading from and writing to, the id number (macros B1 and B2), the buffer type (FIFO
or DIRECT).

The TaskGraph object is then instantiated by providing the list of kernels and buffers registered
above. At this point, everything is ready for the resource allocation request. The task-graph is
sent via the resource allocation() function of the context object (line 28). When the function
returns, a set of resources is available and the application is almost ready to start the useful
execution, i.e. the kernels.

In fact, before proceeding with the kernel launch, we may need to properly set the arguments.
Lines 31-38 show the different classes of arguments currently supported. These are packed into
a single KernelArgument object, which will be passed to the start kernel() context member
function. Input data (in) are written in the input buffer (b1), while we setup the read operation
from the output buffer (b2).

The kernel execution can be launched with the start kernel() which transfers the correct
executable to the assigned processing unit of the HN, along with its arguments, before starting
it. The call returns an Event object (e3) that can be used for synchronizing the main thread
running on the GN, with the termination of the kernel running on a HN unit (line 46).

Finally, resources are released when resource deallocation() is called.

Listing 5 instead, shows the code that is compiled to run on a HN unit, and sent by the
start kernel() call. The entry point is the main function (line 7), which first initializes the envi-
ronment by calling the mango init() function. This means for instance that some default event
resources are allocated and initialized (e.g. start/stop of the kernel, barrier for multi-threading,
etc. . .).

The mango memory map() calls instead, are needed in order to map the registered buffers in the
local virtual address space (lines 9-10). Similarly, this is what happens with the setting of the
vaddr attribute of event objects e1 and e2, used to synchronize the accesses to the FIFO buffer
from the two sides (GN and HN). Variables X and Y then used to store the scalar values passed
to specify the size of the input image. At this point, all the parameters for the actual kernel
execution are ready and the kernel function() can be invoked.

Listing 5: GIF FIFO sample: HN-side code

1 /* main.c */

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 26

http://www.recipe-project.eu

2
3 #include "dev/mango_hn.h"

4 #include <stdlib.h>

5 extern void kernel_function(uint8_t *out , uint8_t *in, int X, int Y,

mango event t e1, mango event t e2);

6
7 int main(int argc , char **argv){

8 mango_init(argv);

9 uint8_t * out = (uint8_t *) mango_memory_map(strtol(argv[5],NULL ,16));

10 uint8_t * in = (uint8_t *) mango_memory_map(strtol(argv[6],NULL ,16));

11 int X = strtol(argv[7],NULL ,16);

12 int Y = strtol(argv[8],NULL ,16);

13 mango event t e1;

14 e1.vaddr = (uint32_t *) mango_memory_map(strtol(argv[9],NULL ,16));

15 mango event t e2;

16 e2.vaddr = (uint32_t *) mango_memory_map(strtol(argv [10],NULL ,16));

17 kernel_function(out , in, X, Y, e1, e2);

18 mango_close (42);

19 }

20
21 /* kernel_function.c */

22
23 #include "dev/mango_hn.h"

24 #pragma mango_kernel

25
26 void kernel_function(uint8_t *out , uint8_t *in, int X, int Y,

mango event t e1, mango event t e2){

27 for (int i=0; i<4; i++) {

28 mango_wait (&e1, READ);

29 mango_wait (&e2, WRITE);

30 printf("KERNEL: mango_wait\n");

31 scale_frame(out , in, X, Y);

32 mango_write_synchronization (&e1, WRITE);

33 mango_write_synchronization (&e2, READ);

34 printf("KERNEL: mango_write_synchronization\n");

35 }

36 }

37
38 void scale_frame(uint8_t *out , uint8_t *in, int X, int Y){

39 int X2=X*2;

40 int Y2=Y*2;

41 for (int x=0; x<X2; x++)

42 for (int y=0; y<Y2; y++)

43 for (int c=0; c<3; c++) {

44 out[y*X2*3+x*3+c]=in[y/2*X*3+x/2*3+c];

45 }

46 }

This function basically iterates to fetch and process the (four) frames of the input GIF image.
The mango wait() calls are used to wait for the input buffer to be ready for read access (line 28),
and the output one to be ready for writing (line 29). Once the scale frame() has completed
its job, we can notify that the buffers are respectively accessible in write and read mode. This is
done by calling mango write synchronization(). This unlocks the transfer of the next frame
from the GN, and makes the output available to other kernels, representing other optional stages

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 27

http://www.recipe-project.eu

of the application execution.

Application Requirements

In the GIF FIFO sample application, described in Section 1.2.4, we briefly mentioned the recipe
file, whose filesystem path is passed as the second argument of the BBQContext constructor. This
file is an extended version of the recipe described in Section 1.1.1, used to specify the application
requirements and, as we are going to see, include profiling information that can be exploited by
the resource allocation policy.

The recipe is again an XML file, to install into the <MANGO ROOT>/bosp/etc/bbque/recipes/

directory. This means that a suitable procedure must be included in the compilation process
of the application. Conventionally, the format file name is: “¡recipe-name¿.recipe”. At run-time,
the selection of the recipe file is performed by specifying the recipe name as the second argument
of the mango init() function, in case of C language API. Example: mango init(myapp-name,

myrecipe), where we are assuming that the recipe file name is myrecipe.recipe. Otherwise, in
the C++ case, the same are the arguments of the BBQContext() constructor.

The example provided in Listing 13 shows a typical recipe structure, for the MANGO API
cases. The tag application is still the topmost level starting from which we can group the
information regarding the application. A static priority value can be assigned by setting the
priority attribute, where the value “0” is used to indicate the highest priority level.

The platform section then identifies the target system we are referring to. The recipe can include
references to multiple targets, leaving to the BarbequeRTRM the burden of picking the actual
system we are running on. Looking at the listed example, we can start from the target MANGO
(id=org.mango). The attribute hw=arch20 specifies the low-level configuration of the platform,
e.g., the available processors and the topology.

Then, the section will include the specific set of Application Working Modes for the target
platform. In general, the AWMs include the following attributes:

• A progressive numeric identifier (id)

• A descriptive name, which is used only for debugging/logging purposes (name)

• A performance level or score (value)

• The configuration time profiled (config-time) when the application switches to the given
AWM

The resources subsections contain the resource assignment configurations. Such assignments
are typically expressed in terms of CPU time quota (pe under cpu, expressed in percentage),
amount of memory (mem), number of accelerator cores (pe under acc) and network bandwidth
(net), in Kbps. In the example, we see a single AWM in which the resource request includes a
2-core accelerator (a processor deployed on a HN) and 1 MB of memory.

However, since in MANGO we need to have per-task and per-buffer resource mapping, the AWM
description does not match completely our resource allocation requirements. The section tg has
been introduced to this purpose: to specify the application requirements at the level of single task
(kernel) (section <reqs>), and (optionally) to include task-graph mapping related information.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 28

http://www.recipe-project.eu

Concerning the requirements, below we list the set of possible metrics that can be currently used
as attributes:

• ctime ms: task (kernel) completion time in milliseconds

• throughput cps: number of executions per second

• hw prefs: ordered list of processing unit preferences

• inbw kbps: read bandwidth

• outbw kbps: write bandwidth

Listing 6: Example of application Recipe.

1 <?xml version="1.0"?>

2 <BarbequeRTRM recipe_version="0.8">

3 <application priority="4">

4 <platform id="org.linux.cgroup">

5 <awms>

6 <awm id="0" name="OK" value="100">

7 <resources >
8 <cpu>

9 <pe qty="100"/>

10 </cpu>

11 <mem qty="20" units="M"/>

12 </ resources >
13 </awm>

14 </awms>

15 <tg>
16 <reqs >
17 <task name="t0" id="0" hw_prefs="peak ,gn ,nup"

throughput_cps="2" inbw_kbps="2000" outbw_kbps="

2500"/>

18 <task name="t1" id="1" hw_prefs="peak ,gn ,nup"

ctime_ms="500"/>

19 </ reqs >
20 </tg>
21 </platform>

22 <platform id="org.mango" hw="arch20">

23 <awms>

24 <awm id="0" name="test" value="10">

25 <resources >
26 <acc>

27 <pe qty="200"/>

28 </acc>

29 <mem qty="1" units="Mb"/>

30 </ resources >
31 </awm>

32 </awms>

33 <tg>
34 <reqs >
35 <task name="t0" id="0" hw_prefs="peak ,gn ,nup"

throughput_cps="1" inbw_kbps="2000" outbw_kbps="

1500"/>

36 <task name="t1" id="1" hw_prefs="peak ,gn ,nup" ctime_ms

="1000"/>

37 </ reqs >

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 29

http://www.recipe-project.eu

38 <mappings>
39 <mapping id="0" exec_time_ms="1000" power_w="20"

mem_bw="">

40 <tasks>
41 <task id="0" acc="0" freq_khz="0"/>

42 <task id="1" acc="1" freq_khz="0"/>

43 </ tasks>
44 <buffer s>
45 <buffer id="0" mem="0"/>

46 </buffer s>
47 </mapping>
48 </mappings>
49 </tg>
50 </platform>

51 </ application >

52 </BarbequeRTRM >

Therefore, for each task we will have a task tag, including the id attribute, which must be
consistent with the value provided at runtime in the register kernel() function call; the name

(optional) and the set of performance requirement attributes, as described above. The attributes
ctime ms and throughput cps for instance, must be considered mutually exclusive. The former
allows us to express the execution time required for a task (deadline), the latter instead focuses
on the number of processing cycles completed in a second. This means that we can rely on
the second when we are more interested in the rate of completed works carried out, than the
actual completion time of each execution. Through the hw prefs attribute, then, the developer
explicitly declares the architecture supported by the task code. This means that the resource
allocation policy, during the task mapping process, will look for processing units matching one
of the reported architectures. The list of string values has to be considered sorted by preference,
which may represent a hint for the policy. Finally, inbw kbps and outbw kbps are useful to
allows the runtime resource allocation policy to ask for HN resource partitions, for which we can
guarantee a certain data transfer bandwidth among tasks.

The application execution model, and the information exported by the platform library (HN
Library), allows us to monitor the current performance comparing the runtime values with the
requirements specified in the recipe. Thus, given a resource mapping choice, we can evaluate
its goodness. Resource allocation policies based on static algorithms can explore the resource
mapping choices space and save the results of this exploration in the <mappings> section of
the recipe. In this section, we assume to have the set of feasible mapping choices selected by
the algorithm. At run-time, the resource manager can pick one from this set, and apply it
according to the current status of the system and the workload. Each mapping choice is reported
under <mapping> and it is characterized by the profiled values of application execution time
(exec time ms), peak power consumption (power mw), and requirements in terms of memory
access bandwidth (mem bw). A mapping includes the tasks and the buffers mapping to the physical
hardware resources. The attribute (freq khz) allows us to specify the operating point of the
target processor, wherever the DVFS support is available.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 30

http://www.recipe-project.eu

Emulation Layer

To provide developers with tools for a faster development cycle, as well as to allow demonstration
and testing of the mangolibs functionalities when a MANGO heterogeneous cluster is not
available, mangolibs includes an emulation library.

The libHN API provides a set of functions to allow the Barbeque Runtime Resource Manager
to request, reserve and release any type of resources within the heterogeneous cluster. The
mangolibs emulation library (libGN) implements the libHN API and allows to perform
resource allocation in a simulation mode. The three major resources – that is compute units
(processors/accelerators), memory buffers located in DDR memories, and bandwidth – are under
control of the local resource manager of the emulator. All these resources are stored as the internal
configuration of the heterogeneous cluster and offered for reservation based on their availability
and platform restrictions. To request a set of units the types of accelerators required by the
application need to be indicated. To limit bandwidth utilization, the local resource manager
allocates units close to the memory that will be accessed. To ensure the smallest average distance
from each unit to the memory, units are selected in the nearest von Neumann neighborhood.
The following three types of bandwidth resource can be reserved: bandwidth at the cluster main
entry point (read and write), network bandwidth for tiles interconnect inside the FPGA cluster
and memory controllers bandwidth (read and write). To avoid network and memory bandwidth
usage from partitions of concurrent applications, reserved units are isolated by setting routing
bandwidth on the boundary of partition to 0.

1.3 RECIPE Application Requirements

In the RECIPE project, we do not expect to introduce disruptive changes in the previously
described programming models. Reasonably, what we are considering is an extension of the
application requirements input, in terms of reliability and timing guarantees.

Concerning the reliability management goal, as stated among the project objectives, we aim at
proposing an approach which is the most transparent possible with respect to the application
developer. This means to leave the burden of managing the application checkpoint and restore to
the resource manager daemon. However, some developers may still be interested in the possibility
of controlling the checkpoint of its execution status at runtime. This is described in deliverable
D2.2, since tightly coupled with the reliability management support, developed as extension of
the local resource manager. As additional feature, we can introduce a new tag in the recipe file,
through which the developer can specify a default application-specific checkpoint rate value.

For the timing requirements instead, we already shown how, especially with the MANGO pro-
gramming model, the developer can set the a completion time or a throughput goal for each task
(kernel) launched by the host-side code of the application. In deliverables D2.2 and D3.2, we
described how we aim at meeting the timing requirements, from a probabilistic perspective. This
means for example to guarantee timing constraints on the WCETs, with a probability value of
p (pWCET). In D2.2, we explained how the pWCET is a statistical distribution. Accordingly,
the recipe file can be extended with a dedicated section, devoted to providing the pWCET dis-
tribution parameters as input (offline profiling outcome). At this point, the probability value p
can represent a requirement: the need of guarantee that the worst-case execution time (WCET)

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 31

http://www.recipe-project.eu

would remain under the expected value with a given probability value p. Or, in other terms, the
possibility of tolerating WCET violations with a probability value 1− p.

These extension to the programming models requirements interface will be evaluated and im-
plemented in the second half of the project.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 32

http://www.recipe-project.eu

2 Domain Specific Languages for RECIPE

To support the exploration of Domain Specific Languages (DSLs) in the RECIPE project, it is
useful to provide a higher level interface with respect to the mangolibs C/C++ API.

To this end, in RECIPE we provide Python and OpenCL bindings for mangolibs. These bind-
ings will be used to quickly explore possible extensions to the API, as well as higher level
constructs that could be used in specialised variants to support an application domains needs.

As an example, the Python bindings will allow to easily manipulate an application’s recipe from
within the application itself, which may be useful to allow a more flexible definition of operating
points to cope with unpredictable operating conditions.

The choice of Python and OpenCL is also justified by the fact that many applications in emerging
domains (for HPC), such as machine learning, are developed first in Python. In particular, this
is the case for RECIPE UC3. By providing Python bindings, we make the RECIPE stack more
attractive for developers who are entering now the HPC domain, and may not be familiar with
C++ or Fortran.

2.1 Python mangolibs API

The baseline Python API is defined as follows. It is currently implemented as a mock-up that al-
low functionally correct execution of application, but does not actually interact with the resource
manager or the libHN.

Context The BBQContext class mirrors the corresponding class of the C++ API. It allows
the definition of a context for the current host-side application, including passing a resource
management recipe.

1 class BBQContext(object):

2 """ A class to hold the current state of the host -side

runtime."""

3 def __init__(self , name="app", recipe="generic"):

4 """ Pass the desired recipe to the RTRM """

5

6 def resource_allocation(self ,tg):

7 """ Resource Allocation for a task graph of the

application

8 @param tg The task graph to allocate resources for

9 @returns An exit code signalling the correct allocation

(or not)

10 @note Current implementation is a dummy."""

11

12 def resource_deallocation(self):

13 """ Resource Dellocation for a task graph of the

application

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 33

http://www.recipe-project.eu

14 @returns An exit code signalling the correct allocation

(or not)

15 @note Current implementation is a dummy."""

16

17 def start_kernel(self , kernel , args , ev=None):

18 """ Start a given kernel

19 @param kernel The Kernel to start

20 @param args A KernelArguments object which provides the

marshalling of

21 arguments

Listing 7: Example of application Recipe.

Kernels The Kernel class mirrors the equivalent class in the C++ API. It allows the definition
of a kernel characterised by a specific function, as well as a set of input and output buffers.

1 class Kernel(object):

2 """ @brief Kernel descriptor """

3 def __init__(self ,kernelID , kfunction , buff_in =[], buff_out

=[]):

4

5 def is_a_reader(self ,buff_id):

6

7 def is_a_writer(self ,buff_id):

8

9 def get_termination_event(self):

10

11 def get_ task _events(self):

12

13 def get_virtual_address(self):

14

15 def get_physical_address(self):

16

17 def get_mem_tile(self):

18

19 def get_kernel(self):

20

21 def get_id(self):

22

23 def set_thread_count(self ,tcount):

24

25 def get_thread_count(self):

Listing 8: Example of application Recipe.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 34

http://www.recipe-project.eu

Buffers The Buffer class mirrors the equivalent class in the C++ API. It allows the definition
of a memory buffer on the HN node memory characterised by its size in bytes, as well as a set
of readers and writers (kernels).

1 class Buffer(object):

2 """HN shared memory buffer descriptor """

3 def __init__(self ,buffID , size , kern_in =[], kern_out =[]):

4

5 def write(self ,GN_ buffer , size , global_size =0):

6 """ Memory transfer from GN to HN in DIRECT mode

7 @param GN_ buffer A memory buffer in the GN address space

8 This function performs a copy between a memory region in the

GN address space

9 and one in the HN address space. The copy works on the

entire buffer size

10 specified in the HN buffer descriptor.

11 @note Current specification assumes synchronous transfer

12 @note Current implementation uses a specialised

GNBuffer class """

13

14 def read(self , GN_ buffer , size , global_size =0):

15 """ Memory transfer from HN to GN in DIRECT mode

16 @param GN_ buffer A memory buffer in the GN address space

17 This function performs a copy between a memory region in the

HN address space

18 and one in the GN address space. The copy works on the entire

buffer size

19 specified in the HN buffer descriptor.

20 @note Current specification assumes synchronous transfer

21 @note Current implementation uses a specialised

GNBuffer class """

22

23 def resize(self ,size):

24

25 def get_id(self):

26

27 def get_size(self):

28

29 def get_phy_addr(self):

30

31 def get_mem_tile(self):

32

33 def set_phy_addr(self ,phy_address):

34

35 def get_event(self):

36

37 def __len__(self):

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 35

http://www.recipe-project.eu

Listing 9: Example of application Recipe.

Events The Event class mirrors the equivalent class in the C++ API. It allows the definition
of events, associated to memory locations in the HN node mutual exclusion registers (which are
memory mapped in the HN physical address space).

1 class Event(object):

2 """HN Event descriptor

3 These events are also used at the GN level."""

4 def __init__(self , _event , kernel_id_in =[], kernel_id_out

=[]):

5

6 def wait(self):

7

8 def signal(self):

Listing 10: Example of application Recipe.

Task Graph The TaskGraph class provides a simplified interface with respect to the C++
API, since the lists of kernels, buffers and events can be updated directly using the standard
Python list operators.

1 class TaskGraph ():

2 """A structure type representing a task graph

3 Note The actual graph structure can be inferred by reading

the

4 mango.Buffer and mango.Event objects , which include links

to the readers

5 and writers."""

6 def __init__(self , kernels =[], buffers=[], events =[]):

7 """ Define a task graph

8 @param kernels list of mango.Kernel objects

9 representing the kernels in the task graph

10 @param buffers list of mango.Buffer objects

11 representing the buffers in the task graph

12 @param events list of mango.Event objects

13 representing the synchronization events in the task

graph

Listing 11: Example of application Recipe.

Kernel Functions The KernelFunction class mirrors the behaviour of the corresponding
C++ class. It allows to define different implementations of a kernel function to run on different
types of compute units. In the current mock-up implementation, only kernels running on the
emulator node are allowed, and must be Python code fragments returning the kernel function.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 36

http://www.recipe-project.eu

1 class KernelFunction(object):

2 """ Kernel function

3 This is an array of function pointers to support multiple

versions of the

4 kernel.

5 Note: This allows one kernel implementation per type of

unit. If more are

6 desired , we need to redesign this data structure."""

7 def __init__(self):

8

9 def load(self , kernel ,unittype):

10

11 def get_kernel_version(self , unittype):

12

13 def set_kernel_size(self ,unittype , size):

14

15 def get_kernel_size(self ,unittype):

16

17 def is_loaded(self):

18

19 def __len__(self):

Listing 12: Example of application Recipe.

Example Application

The following (very simple) application example can be functionally run with the mock-up
implementation of the Python API. It performs a pair-wise addition between the elements of
two buffers (lists of integers).

An additional mango.GNBuffer class is used to wrap the lists on the host side.

1 import mango

2

3 kernel="""def mango_kernel ():

4 def kernel(v1 , v2 , v3):

5 for i,j in zip(v1,v2):

6 v3.append(i*j)

7 return

8 return kernel

9

10 kernel=mango_kernel ()

11 """

12

13 cxt=mango.BBQContext ()

14 kf=mango.KernelFunction ()

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 37

http://www.recipe-project.eu

15 kf.load(kernel ,"gn")

16 k1=mango.Kernel(1,kf)

17 b1=mango.Buffer(1,size =10)

18 b2=mango.Buffer(2,size =10)

19 b3=mango.Buffer(3,size =10)

20 arg1=mango.Arg(1,b1,len(b1))

21 arg2=mango.Arg(2,b2,len(b2))

22 arg3=mango.Arg(3,b3,len(b3))

23 tg=mango.TaskGraph ([k1],[b1,b2,b3])

24 cxt.resource_allocation(tg)

25 b1.write(mango.GNBuffer(range (1,10)) ,10)

26 b2.write(mango.GNBuffer(range (1,10)) ,10)

27 ev=cxt.start_kernel(k1 ,[arg1 ,arg2 ,arg3])

28 ev.wait()

29 out=mango.GNBuffer ()

30 b3.read(out ,10)

31 print(out.data)

Listing 13: Example of application Recipe.

2.2 OpenCL mangolibs API

In order to properly support widespread programming languages choices, in RECIPE we aim
also at providing a suitable OpenCL wrapper for the mangolibs host-side API.

The mangolibs OpenCL API in particular, would represent and extension of the OpenCL
standard, due to the need of supporting the concept of Task Graph, as well as mapping the
main constructs of OpenCL on the libmango C++ API. The following constructs and features
from OpenCL are supported in our current implementation:

Platform : The Platform model of OpenCL is composed of a host and one or more OpenCL
devices. Currently, and embedded profile is used, as no online compilation is currently provided
by the MANGO API implementation.

Device : MANGO employs internally a similar view of the architecture as that exposed by
OpenCL. However, this view is opaque, since the devices are managed by the resource manager.
As a result, device selection is not up to the programmer, and is delayed to the resource alloca-
tion phase. Consequently, we offer a managed device, which is the only device available in the
MANGO platform.

Context : The OpenCL Context maps directly to the MANGO Context.

Buffer Object : Buffer Objects are mapped to MANGO Buffers. FIFO Buffers are not used
by the OpenCL Wrapper.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 38

http://www.recipe-project.eu

Program Object : the Program Object in OpenCL maps directly on the MANGO Kernel-
Function, except that multiple implementations can be provided in MANGO.

Kernel Object : corresponds to MANGO Kernel. As the method of setting arguments dif-
fers, the OpenCL Wrapper keeps track of the kernels arguments to update the MANGO kernel
argument every time an OpenCL call for setting arguments is performed.

Events : OpenCL events map directly onto MANGO events.

CommandQueue : the queue contains the kernels to be executed, ordered by submission
time. This corresponds to the TaskGraph in MANGO, which however has an explicit way to
detect dependencies. As a result, the TaskGraph is not wrapped, and must be explicitly managed
even in OpenCL.

Exceptions : Generally, each MANGO API Error code can be mapped to an OpenCL excep-
tion.

A typical OpenCL program works through the following flow:

• Get available Platform: clGetPlatformIDs()

• Get available Devices: clGetDeviceIDs()

• Create Context: clCreateContext()

• Create Command Queue: clCreateCommandQueue()

• Create Buffers: clCreateBuffer()

• Create and Build Program: clCreateProgramWithSource() or clCreateProgramWithBinary
()3

• Create Kernel: clCreateKernel()

• Set Kernel Arguments: clSetKernelArg()

• Queue Buffers: clEnqueueWriteBuffer()

• Queue and execute Kernels: clEnqueueNDRangeKernel() or clEnqueueTask()

• Read the result from read buffer: clEnqueueReadBuffer()

• Release all resources, program, kernel, buffers and context: clReleaseProgram(); clReleaseKernel
(); clReleaseMemObject()

The workflow is implemented in MANGO as follows:

3mangolibs currently implements only the latter.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 39

http://www.recipe-project.eu

OpenCL function MANGO Implementation
clGetPlatformIDs() Returns the MANGO platform
clGetDeviceIDs() Returns a special managed device
clCreateContext() Maps to mango init()

clCreateCommandQueue() Creates an empty queue, which will be populated by
mango task graph create()

clCreateBuffer() mango register memory()

clCreateProgramWithBinary() mango kernelfunction init(), mango load kernel()

clCreateProgramWithSource() mango kernelfunction init() mango load kernel()4

clCreateKernel() mango register kernel()

clSetKernelArg() mango set args()

clEnqueueWriteBuffer() mango write()

clEnqueueTask() mango start kernel()

clEnqueueReadBuffer() mango read()

clReleaseKernel() mango deregister kernel()

clReleaseMemObject() mango deregister memory()

Table 1: OpenCL to MANGO API function calls mapping.

Example Application

In the following Listing 14, we show an example of code (Matrix Multiplication) implemented in
OpenCL and using the MANGO API, for the specific requirements of resource allocation. The
OpenCL API wraps the underlying MANGO API according to Table 1.

1 // Example: Matrix Multiplication (Host -side code)

2 void main(int argc , char**argv) {

3 int *A, *B, *C, *D, rows , columns , out=0, i, j;

4 cl_int errNum , plid , nplat , devid , ndevs;

5 cl_context context = NULL;

6 cl_command_queue queue = NULL;

7 unsigned char * binaries [1];

8 binaries [0] = loadfromfile("./ test_gn_app", &lenghts);

9 rows = atoi(argv [1]);

10 columns = atoi(argv [2]);

11 /* matrix allocation */

12 A = malloc(rows*columns* s i z eo f (int));
13 B = malloc(rows*columns* s i z eo f (int));
14 C = malloc(rows*rows* s i z eo f (int));
15 D = malloc(rows*rows* s i z eo f (int));
16 /* input matrices initialization */

17 init_matrix(A, rows , columns);

18 init_matrix(B, rows , columns);

19 /* initialization of the mango context */

20 clGetPlatformIDs(1, &plid , &nplat);

21 clGetDeviceIDs(plid , NULL , 1, &devid , &ndevs);

22 context = clCreateContextFromType(NULL ,
23 CL_DEVICE_TYPE_CPU , NULL , NULL , &errNum);

24 queue=clCreateCommandQueue(context , devid , 0, NULL);

25 /* kernel creation */

26

27 cl_program *k = clCreateProgramWithBinary(context , 1, lengths ,

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 40

http://www.recipe-project.eu

binaries , NULL , NULL);

28 cl_kernel k1 = clCreateKernel(k, NULL , &errNum);

29 /* registration of buffers */

30 cl_mem b1 = clCreateBuffer(k1, CL_MEM_READ_ONLY , rows*columns* s i z eo f (
int), NULL ,& errNum);

31 cl_mem b2 = clCreateBuffer(k1, CL_MEM_READ_ONLY , rows*columns* s i z eo f (
int), NULL ,& errNum);

32 cl_mem b3 = clCreateBuffer(k1 , CL_MEM_WRITE_ONLY , rows*rows* s i z eo f (int
), NULL ,& errNum);

33 /* Registration of task graph */

34 mango_task_graph_t *tg = mango_task_graph_create (1, 3, 0, k1, b1, b2,

b3);

35 /* resource allocation */

36 mango_resource_allocation(tg);

37 /* Execution preparation */

38 clSetKernelArg(*k1, 0, s i z eo f (uint64_t), &rows);

39 clSetKernelArg(*k1, 1, s i z eo f (uint64_t), &columns);

40 clSetKernelArg(*k1, 2, s i z eo f (cl_mem), &b1);

41 clSetKernelArg(*k1, 3, s i z eo f (cl_mem), &b2);

42 clSetKernelArg(*k1, 4, s i z eo f (cl_mem), &b3);*/

43 /* Data transfer host ->device */

44 clEnqueueWriteBuffer(queue , b1, 0, 0, 0, A, 0, NULL , NULL);

45 clEnqueueWriteBuffer(queue , b2, 0, 0, 0, B, 0, NULL , NULL);

46 cl_event ev;

47 /* spawn kernel */

48 errNum = clEnqueueTask(queue , k1, 1, NULL , NULL , NULL , 0, NULL , &ev);

49 /* reading results */

50 clEnqueueReadBuffer(queue , b3 , 0, 0, 0, C, 1, ev, NULL);

51 /* shut down the mango infrastructure */

52 mango_resource_deallocation(tg);

53 mango_task_graph_destroy_all(tg);

54 clReleaseContext(context);
55 }

Listing 14: Example of Matrix Multiplication using OpenCL on top of MANGO

2.3 Dynamic Compilation of Kernels

In MANGO, the mangolibs API are defined as able to accept source kernels. However, this
capability was not implemented due to resource constraints, as well as and limited applicabil-
ity in the context of the MANGO use case scenarios. In RECIPE, dynamic kernel compilation
can be useful to apply different operating points through compiler transformations (e.g., loop
unrolling). This requires the ability to access the recipe for the specific application from man-
golibs (currently, it is only used by the runtime manager, or to receive the same information
from the runtime manager itself).

This capability will be implemented in the mangolibs during the first quarter of year 3. The
dynamic compilation method will not modify the programming interface, but will require some
extensions to the current representation of the platform information. A configuration file con-
tains the mapping between the architecture types available in the mangolibs and the paths
to their compilers (which include the necessary source-to-source transformations needed to per-

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 41

http://www.recipe-project.eu

form the argument decoding). This configuration file is loaded into a map data structure at
the initialization of the mangolibs, either through mango init or through the creation of the
mango::Context. The kernel loading function will then access this information to perform the
selection of the appropriate compiler for the selected accelerator platform.

The key advantage of dynamic compilation is the ability to perform a re-compilation when
different parameters are required – for example because the kernel needs to be re-allocated
on a variant of the same platform with different capabilities. In this case, the code can be
recompiled using a different optimization strategy (possibly including specialisation based on
runtime constants) to achieve better performances.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 42

http://www.recipe-project.eu

3 Heterogeneous Acceleration Programming

This section deals with the low-level OpenCL programming of heterogeneous accelerators, with
emphasis on the specific features of the target architectures adopted in RECIPE. We recall
that Deliverable 4.1 set as the outcome of Task 4.1 the spectrum of approaches to the integra-
tion of heterogeneous acceleration in the RECIPE platform, depending on the specific use case
requirements:

• full custom HDL implementation, suitable for performance-critical, relatively simple and
regular kernels;

• optimized library-based design, for well-supported kernels to be implemented in hardware,
e.g. linear algebra;

• pure-hardware HLS-based design, for non-standard kernels or control-intensive parts of the
application that are not performance-critical;

• software-programmed accelerators, particularly the nu+ vector core and associated LLVM-
based compiler imported from MANGO, which is suitable for control-intensive parts of
the software application that do not match the restrictions of HLS and/or data-intensive
kernels benefitting from vector-style programming.

These approaches essentially correspond to different types of heterogeneous acceleration re-
sources that can be found in the platform, particulary in heterogeneous fabrics based on Field-
Programmable Gate Arrays. Of the above four types of acceleration resources, the first two
represent components that need low-level physical integration in the system. For that, we are
developing in WP4 a customizable reference design for easy configuration of an FPGA system
integrating full-custom or library IPs. The remaining two types, software-programmable and
HLS accelerators, on the other hand, lend themselves to a higher-level abstraction and a corre-
sponding programming interface, that can be profitably unified under a common programming
model specialized for accelerator programming. In RECIPE, we identified the OpenCL model
as a good fit for this purpose. In Task 2.3, we thus allocated a significant effort to:

• implementing the OpenCL support for the configurable GPU-like soft-core, called nu+,
developed by the MANGO H2020-FETHPC project;

• carefully evaluating programming styles and specificities of OpenCL as supported by HLS
tool vendors.

This section provides the detail of the work done for the implementing the nu+ OpenCL support,
to be used as a general-purpose programming approach for the integration of customizable
accelerators, in line with the MANGO philosophy. Furthermore, because proprietary FPGA-
targeted OpenCL tools require particular programming styles that deviate from the common
use of OpenCL in GPU-like accelerators, the section also briefly describes the main guidelines
to the optimization of OpenCL-based FPGA kernels, particularly referring to the case of Xilinx
tools which are of interest for the RECIPE prototype.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 43

http://www.recipe-project.eu

3.1 Implementation of OpenCL for the nu+ GPU-like programmable core

The nu+ GPU-like configurable core imported from MANGO exposes useful features for im-
proved resource efficiency in that it provides an abundance of threads executing in a SIMD-like
fashion, while reducing control overheads and hiding possibly long operation latencies. Accel-
erators based on nu+ can effectively exploit multithreading, SIMD/SIMT operation, and low-
overhead control flow constructs, in addition to a range of advanced architecture customiza-
tion capabilities, in order to enable a very high-level utilization of the underlying resources.
RECIPE imported from MANGO the baseline implementation of nu+, ensuring a set of min-
imum features including: support for hardware multithreading; data-level parallelism through
large-size vector/SIMD/SIMT support; multiprocessor organization allowing non-SIMT execu-
tion; lightweight control flow constructs exposed to the programmer, such as predication and
mechanisms for optimizing diverging threads and improving datapath utilization; hybrid memory
hierarchy providing both coherent caches and noncoherent scratch-pad memory; on-tile perfor-
mance counters, e.g. for utilization, stalls, instruction counters; facilities for fault/interrupt han-
dling and debug. In RECIPE, particularly in Task 2.3, an OpenCL (version 1.1) implementation
was built on top of this hardware system.

OpenCL model on nu+

The OpenCL framework is defined in terms of a set of models describing the way the target
features meet its specification. Bearing in mind the custom design of nu+, it is essential to
explain how physical resources are mapped to the OpenCL models. The OpenCL framework is
defined in terms of a set of models describing the way the target features meet its specification.
Bearing in mind the custom design of nu+, it is essential to explain how physical resources are
mapped to the OpenCL models.

OpenCL Platform Model on nu+. From the OpenCL specification, a platform is defined
as a set of compute devices on which the host-system is connected to. Each device is further
divided into several compute units (CUs), each of them defined as a collection of processing
elements (PEs).
Referring to nu+ core, it is structured in terms of a set of eight hardware threads. Each hardware
thread races with each other to access the sixteen hardware lanes.

OpenCL Specification Hardware Feature
Compute Device (CD) nu+ System
Compute Unit (CU) nu+ Core
Processing Element (PE) nu+ Hardware Thread

Table 2: Platform Model Mapping

Figure 3 and Figure 2 show how the OpenCL Platform model is adapted to the target. As it
is highlighted, the compute device abstraction is physically mapped on the nu+ System. Each
nu+ Core maps on the OpenCL Compute Unit. Internally, the core is structured into hardware
threads, each of them representing the abstraction of the OpenCL processing element.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 44

http://www.recipe-project.eu

Figure 3: Platform Model Mapping - Visual

OpenCL Execution Model on nu+. From the execution model point of view, OpenCL
relies on an N -dimensional index space, where each point represent a kernel instance execution.
Since the physical kernel instance execution is done by the hardware threads, the OpenCL work-
item is mapped on a nu+ single hardware-thread. Consequently, a work-group is defined as a set
of hardware threads, and all work-items in a work-group execute on a single compute unit, that
is the nu+ Core as depicted in Figure 3. Figure 4 and Figure 3 illustrate the mapping explained
above.

OpenCL Specification Hardware Feature
Kernel Instance nu+ System
Work-Group nu+ Core
Work-Item nu+ Hardware Thread

Table 3: Execution Model Mapping

Figure 4: Execution Model Mapping - Visual

OpenCL Memory Model on nu+. OpenCL provides logical sectioning of the device mem-
ory by defining constraints on variable scope regarding which execution model elements have
access to.
OpenCL distinguishes among four kinds of address spaces: the global and constant ones, that

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 45

http://www.recipe-project.eu

can be accessed by all work-items in all work-groups, local one, that is only visible to work-items
within a work-group and the private one, which can only be accessed by the single work-item.
The target-platform is provided with a DDR memory, that is the device memory in OpenCL
nomenclature. Consequently, variables are physically mapped to this memory. The compiler it-
self verifies if the OpenCL constraints are satisfied by looking at the address-space qualifier.

The nu+ architecture provides a per-core ScratchPad Memory that is a noncoherent memory
area which can be exclusively accessed by each core. While this memory is compliant with the
OpenCL local memory features, in the current platform implementation the notions of local and
global memory are merged into the global memory.
Furthermore, each hardware thread within the nu+ core may rely on a private stack area. This
memory section is private to each hardware thread, that is the OpenCL work-item, and cannot
be addressed by others. As a result, each stack area acts as the OpenCL private memory. A
summary is provided in Figure 5 and Figure 4.

OpenCL Specification Hardware Feature
Private Memory nu+ Stack Area
Local Memory nu+ DDR Memory
Global Memory nu+ DDR Memory

Table 4: Memory Model Mapping

Figure 5: Memory Model Mapping

OpenCL Programming Model on nu+. OpenCL supports two kinds of programming
models, data- and task-parallel.
A data-parallel model requires that each point of the OpenCL index space is executing a kernel
instance. Since each point represent a work-item and work-items are mapped to the hardware
threads, the data-parallel requirements are correctly satisfied.
A task-parallel programming model requires that each kernel instance is independently executed
in any point of the index space. In this case, each work-item is not constrained to executing
the same kernel instance as others. Since each nu+ hardware thread can rely on a set of sixteen

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 46

http://www.recipe-project.eu

hardware lanes, OpenCL support is realized with the aim to use vector types.
The following list shows how lock-step execution is supported.

• charn, ucharn are respectively mapped to vec16i8 and textttvec16u8, where n=16 (while
only n = 16 is supported, other datapath configurations could support different number
of lanes).

• shortn, ushortn are respectively mapped to vec16i16 and textttvec16i32, where n=16.

• intn, uintn are respectively mapped to vec16i32 and textttvec16u32, where n=16.

• floatn are mapped to vec16f32, where n=16.

Designing OpenCL Host-Runtime on nu+

The OpenCL Runtime implements the set of functions used to coordinate and handle the device,
to start applications and to control their execution. The design of OpenCL Runtime on nu+
relies on a two-level layered architecture, implementing the following hierarchical abstraction:

• A low-level abstraction, made up of the OpenCL UML Class Diagram implementation;

• A high-level abstraction, formed of APIs implemented on lower-level methods.

Developers only access the API level, without having to deal with low-level mechanisms for
direct device interfacing.

Figure 6: Runtime Layered Design

Low-Level Runtime Design. Low-level runtime is designed in an object-oriented fashion
consistently with the OpenCL API specification providing a simple map between the APIs and
the underlying object representation.

Figure 7 shows the implemented structure as a class diagram. nu+ hardware features are not
capable to fulfill the entire specification. Consequently, the Image class is not considered in the
implementation, as well as the Sampler class.
All classes inherit from CLObject, that is an abstract class that holds common information. The
interface to devices is implemented in a set of functions that are collected in the DeviceInterface
header file in order to provide a centralised way to access and to manage the devices.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 47

http://www.recipe-project.eu

Figure 7: OpenCL low-level runtime design

High-Level Application Programming Interface Design. The API implementation is
based on C++11 and is provided in the form of a dynamic linkable library to be directly linked
into the final executable.

Figure 8 shows the interaction between OpenCL APIs and the related low-level runtime. The
communication paradigm adopted is of request-response type. Consequently, when the host pro-
gram calls an OpenCL function, the underlying object representation handles the request. The
API function waits for the response and sends it to the host, adapting the format to be compliant
with the OpenCL specification.

Figure 8: Interaction between low-level runtime and high-level APIs

Compilation Support to OpenCL C Kernels

The execution of OpenCL C kernels on the custom device requires modifications related to the
compilation flow, regarding both the front-end and the back-end phases.
Clang, the LLVM frontend, natively supports the compilation of OpenCL C kernels. However,
to build an executable OpenCL C memory image for the target platform it is necessary to define
the support to vector types and the implementation of OpenCL C builtins.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 48

http://www.recipe-project.eu

Vector Types. OpenCL provides a set of vector types to explicitly support the lock-step
execution. Bearing in mind the nu+ structure, only the following types may be supported:

• char16, uchar16 are respectively mapped to vec16i8 and vec16u8;

• short16, ushort16 are respectively mapped to vec16i16 and vec16i32

• int16, uint16 are respectively mapped to vec16i32 and vec16u32;

• float16 is mapped to vec16f32.

OpenCL support for these vector types is provided by adapting the compiler standard library.
The adaption involves the modification of the stdint.h library, by adding the lines showed
in Figure 9. However, to ensure better compatibility between native and OpenCL C kernels, a
dedicated stdint library has been defined.

typedef char char16 __attribute__((ext_vector_type(16)));

typedef unsigned char uchar16 __attribute__((ext_vector_type(16)));

typedef short short16 __attribute__((ext_vector_type(16)));

typedef unsigned short ushort16 __attribute__((ext_vector_type(16)));

typedef int int16 __attribute__((ext_vector_type(16)));

typedef unsigned int uint16 __attribute__((ext_vector_type(16)));

typedef float float16 __attribute__((ext_vector_type(16)));

Figure 9: stdint.h library adaption

Work-item Builtins. OpenCL supports a set of builtins used by work-items to get informa-
tion of the execution, such as work-item local and global IDs, index space sizes and so on, as
shown in Figure 10.

uint get_global_id(uint dimindx){

return __builtin_nuplus_read_control_reg(GLOBAL_ID);

}

uint get_group_id(uint dimindx){

return __builtin_nuplus_read_control_reg(CORE_ID);

}

Figure 10: Chunk of stdlib.c containing work-item builtins implementation

LLVM IR Transformation. In order to be capable of OpenCL C kernel execution, the nu+
LLVM back-end needs to be modified to allow the generation of the necessary adaption code.
The target Start Routine is designed to have a single entry-point, the main function, that is in
charge of parsing parameters and to explicitly call the kernel function. The entry-point of an
OpenCL C kernel is the function itself. The adopted solution to fill this semantic gap relies on
the definition of a LLVM IR Module Pass.

The generated code should look like the one showed in Figure 11.

As a consequence, the ModulePass should be structured in the following parts:

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 49

http://www.recipe-project.eu

; Function Attrs: nounwind

define void @main(i32, i8** nocapture readonly) local_unnamed_addr #0 {

%3 = bitcast i8** %1 to i32*

%4 = load i32, i32* %3, align 4

...

tail call void @kernel_f(i32 %4, ...) #2

ret void

}

Figure 11: Example of the Module Pass desired output

• Definition of the main function signature:

FunctionType *main_type =

TypeBuilder<void(int, char**), false>::get(ctx);

Function *func =

cast<Function>(M.getOrInsertFunction("main", main_type));

• Creation of an entry labeled basic block:

BasicBlock *block = BasicBlock::Create(ctx, "entry", func, 0);

builder.SetInsertPoint(block);

• For each kernel argument, create an aligned load instruction to retrieve the argument from
the argv array and add it to the kernel arguments:

argument_list[counter] = builder.CreateLoad(arg.getType(),

builder.CreateBitCast(builder.CreateGEP(&argv,

builder.getInt32(index)),

arg.getType()->getPointerTo()));

argument_list[counter]->setAlignment(4);

kernel_arguments.push_back(argument_list[counter++]);

• Kernel function call:

builder.CreateCall(kernel_function, kernel_arguments);

Once the pass is defined, it has to be registered in the PassManager, to add it to the IR opti-
mization pipeline.

__kernel void kernel_function(unsigned param,

__global unsigned* out)

{

unsigned int i = 0;

*out = i + param;

}

Figure 12: OpenCL kernel function

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 50

http://www.recipe-project.eu

define void @main(i32, i8** nocapture readonly) local_unnamed_addr #1 {

entry:

%2 = getelementptr i8*, i8** %1, i64 6

%3 = bitcast i8** %2 to i32*

%4 = load i32, i32* %3, align 4

%5 = getelementptr i8*, i8** %1, i64 7

%6 = bitcast i8** %5 to i32**

%7 = load i32*, i32** %6, align 4

tail call void @kernel_function(i32 %4, i32* %7)

ret void

}

Figure 13: Generated main function

For instance, Figure 13 and Figure 12 show the execution of the main code generation. Figure
12 presents an example of a simple OpenCL C kernel. Figure 13 shows the IR-format of the
generated main function.

3.2 HLS-targeted OpenCL programming interface

FPGA accelerators have been traditionally designed by means of Hardware Description Lan-
guages (HDLs), such as VHDL or Verilog. HDL-based design requires an extensive knowledge
about hardware-design patterns as well as an intensive testing and simulation to check whether
the generated design is correct, both in terms of functional correctness, and in the meeting of
hardware constraints. Recently, solutions based on high-level languages, known as High Level
Synthesis (HLS) flows, have become a consolidate approach to the implementation of hardware
functions avoiding the difficulties of HDL design. Nevertheless, an FPGA-based accelerator ar-
chitecture also includes the designing of communication interfaces with the host and memories.
Overcoming these limitations requires the implementation of a framework that includes firmware,
software and device drivers to connect, control and transfer data to and from the FPGA. For
this purpose, both Xilinx and Intel FPGA support OpenCL-based design tools, presenting them
as a more abstract design entry solution compared to direct use of HLS (although HLS is still
required behind the scenes). While C/C++ programs used with HLS require specific pragmas to
control low-level aspects, e.g. memory interface, pipelining, etc, OpenCL kernels do not strictly
require additional annotations, unless the developer is seeking improved optimization. That
however makes OpenCL programming less performance-friendly than direct HLS, making its
use uncertain in cases where the full potential of FPGAs is to be evaluated and compared to
alternative acceleration platforms. Furthermore, while in principle OpenCL is meant to provide
a shared model across heterogeneous architectures, ranging from GPUs to FPGAs, the actual
execution models that are exploited in the two cases remain different. This divergence essentially
boils down to the difference between vector-like parallelism and pipeline parallelism which are
exploited in the two cases, plus a number of features that are specifically aimed for FPGA design,
e.g. heterogeneous memory support, channels, etc. In conclusion, while OpenCL for GPUs and
for HLS-based FPGA design can in principle ensure functional portability across architectures,
it is very likely that, for practical purposes, the code needs to be re-written when moving from

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 51

http://www.recipe-project.eu

one type of architecture to the other.

Based on the above observations, RECIPE considered the evaluation of OpenCL for HLS-based
FPGA design, although not as a primary choice. In Task 2.4, thus, we also allocated some effort
to evaluating the Xilinx OpenCL support, relying on the prototype platform built in WP4 and
working with self-contained acceleration kernels exercising the potential of customized FPGA
acceleration. Hence, we came up with a set of design guidelines for the HLS-targeted use of the
OpenCL programming interface, which are part of of this deliverable and are complementary to
the more general and portable support provided by the GPU-like programmable core, presented
in the previous subsection.

OpenCL kernel design flow for FPGAs

The development of acceleration functions through OpenCL SDK for FPGAs relies on two main
components: an FPGA bitstream containing the implemented acceleration function, and a host
program to manage the FPGA-based accelerator.

Figure 14: Acceleration function design flow

Figure 14 shows a simplified view of a typical kernel design flow over the OpenCL SDK for
FPGAs. Two decision points are highlighted: the first one checks the functional correctness of the

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 52

http://www.recipe-project.eu

algorithm, after performing a CPU-based emulation. If the functional correctness is not verified,
kernel design modifications are required. Otherwise, the next step is the hardware emulation
and the generation of reports containing information on estimated performance. If the estimated
data satisfies the performance constraints, the FPGA bitstream generation starts. Otherwise,
kernel re-design could be required.

Figure 15: Internal Structure of a OpenCL-enabled device

An OpenCL-enabled FPGA device is internally structured in the following regions:

• A Static Region, containing the implementation of the communication logic for the off-
chip DDR memory, the Dynamic Region, and the PCIe endpoint reserved for the host
interconnection. This region can be flashed onto the an EEPROM on the board.

• A Dynamic Region, consisting of a reconfigurable logic area in which OpenCL-generated
compute units are placed. This region relies on an AXI interconnection to interface the
static-region for both memory and host accesses.

The FPGA bitstream generation phase produces the compute units to be placed in the dynamic
region. Memory- and host-interfaces are automatically generated by the tool. Figure 15 shows
the structure of a OpenCL-enabled device.

Improving Performance of OpenCL kernels

To leverage computational parallelism during the implementation of an algorithm on the FPGA,
the use of OpenCL extension attributes is required. The following subsections provide best
practices for the development of OpenCL kernels, based on Xilinx SDAccel environment, that
are of potential relevance for RECIPE.

Exploiting Data Parallelism. The easiest way to exploit data parallelism is to use OpenCL
vector types. The use of vector type kernel arguments allows control over the AXI interface data
width. To maximize the data throughput, it is recommended to choose data types mapping to
the full data width on the memory controller. This enables the optimization of burst transfers
through coalesced memory accesses.

__kernel AIO_Stencil (__global restrict float16 *in,

...

) {}

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 53

http://www.recipe-project.eu

The above kernel definition shows the way to define a vector data type argument. This declaration
tells the compiler to set a 512-bit interface between the host and the memory bank where data
pointed by in is stored. It is important to highlight the usage of the attribute restrict telling
the compiler that no other memory interfaces have to be generated to access data pointed by
in.

Besides the usage of vector types, the OpenCL standard natively supports the partitioning of
the execution in work-groups and work-items. This behavior has to be statically defined prior
to kernel definition using the attribute reqd work group size(x,y,z), where x,y,z represent
the sizes of the work-group. For example, the following code uses a single work-group composed
by N work-items.

__attribute__((reqd_work_group_size (N,1,1))

__kernel AIO_Stencil (__global restrict float16 *in,

...

) {}

Loop Parallelism. FPGA-targeted OpenCL flows, like the Xilinx SDAccel environment, allow
improvement of loop performance by using two different approaches: loop unrolling and loop
pipelining.

Loop Unrolling. Unrolling a loop enables the full parallelism of the model to be exploited.
This is achieved by marking a loop to be unrolled so that the tool will create the implementation
with the highest possible degree of parallelism.

...

__attribute__((opencl_unroll_hint))

for (unsigned i = 0; i < N; ++i) {

A[i] = B[i];

}

However, the usage of the opencl unroll hint attribute produces an overhead in terms of
area proportional to the unroll factor. Furthermore, considering the code above, each itera-
tion requires the access to an element of the buffer A. In order to pursue an unrolling factor
of N , the buffer B must be partitioned. Partitioning an array requires additional resources.
The SDAccel environment allows two ways to manage a buffer: partition and reshaping. The
xcl array partition attribute implements an array declared within kernel code as multiple
physical memories instead of a single physical memory. It supports cyclic, block-based, and
complete partitioning on multi-dimensional arrays. The xcl array reshape attribute combines
the effect of xcl array partition, breaking an array into smaller arrays, and concatenating
elements of arrays by increasing bit-widths.

For instance, in order to get an unrolling factor of N in the code above, buffer A must be fully
partitioned, as the snippet below shows.

...

int A[BUFFER_SIZE] __attribute__((xcl_array_reshape(complete, 0))

__attribute__((opencl_unroll_hint))

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 54

http://www.recipe-project.eu

for (unsigned i = 0; i < N; ++i) {

A[i] = B[i];

}

Loop pipelining. Pipelining a loop results in higher latency and increased throughput, po-
tentially improving the final kernel performance. In fact, although unrolling loops increases
concurrency, it does not address the issue of keeping all elements in a kernel data path busy at
all times. Even in an unrolled case, loop control dependencies can lead to sequential behavior.
The sequential behavior of operations results in idle hardware and a loss of performance. In order
to pipeline a loop, the usage of xcl pipeline loop is required. Consider the following snippet
of code, in which each iteration depends on the previous one. The usage of the unrolling in this
case leads to a sequential behaviour. An improvement of performance can be obtained by using
the xcl pipeline loop attribute. In this specific case, the compiler infers a shift register.

...

__attribute__((xcl_pipeline_loop))

for (unsigned i = 1; i < N-1; ++i) {

A[i] = A[i-1];

}

Task Parallelism. Task parallelism allows the programmer to take advantage of data flow
parallelism. In contrast to loop parallelism, when task parallelism is deployed, full execution
units (tasks) are allowed to operate in parallel taking advantage of extra buffering introduced
between the tasks.

The xcl dataflow attribute enables task-level pipelining, allowing functions and loops to over-
lap in their operation, increasing the concurrency of the implementation and hence the overall
throughput of the design.

The general pattern suggested for use in RECIPE relies on splitting the kernel design into three
sub-functions, allowing a dataflow execution:

• An input stage, that handles the input-communication to off-chip memory banks;

• A compute stage, that encapsulates the computational logic fo the acceleration function;

• An output stage, that handles the output-communication to off-chip memory banks;

In this case, the usage of the xcl dataflow attribute allows a concurrent execution of all three
stages.

__attribute__((reqd_work_group_size (1,1,1))

__attribute__((xcl_dataflow))

__kernel AIO_Stencil (__global restrict float16 *in,

...

) {

...

read_input(..);

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 55

http://www.recipe-project.eu

compute(..);

write_output(..);

}

OpenCL natively supports a solution to handle inter-kernel communication through pipes. A
pipe stores data organized as a FIFO. Pipes can be used to stream data from one kernel to
another inside the FPGA device without having to use the external memory, which greatly
improves the overall system latency. As a consequence, pipes can be used as an alternative to
the xcl dataflow attribute. Pipes must be statically defined outside of all kernel functions.
The depth of a pipe must be specified by using the xcl reqd pipe depth attribute in the pipe
declaration.

By using pipes, the kernel structure discussed above requires the definition of three kernels, as
shown below.

pipe TYPE* input_to_compute;

pipe TYPE* compute_to_output;

__attribute__((reqd_work_group_size (1,1,1))

__kernel read_input (...) {

}

__attribute__((reqd_work_group_size (1,1,1))

__kernel compute (...) {

}

__attribute__((reqd_work_group_size (1,1,1))

__kernel write_output (...) {

}

As a result, both the techniques enables task-level parallelism. It is recommended to use pipes
when you want depth control over the stream of data between kernel, while it is preferable to use
the xcl dataflow attribute to fully rely on compiler optimizations for a task-parallel execution.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 56

http://www.recipe-project.eu

4 Conclusions

In this Deliverable we reported on the programming models considered for the implementation
of the application use cases in RECIPE. The Deliverable introduced the Abstract Execution
Model and the MANGO API, both characterized by the integration of the application execu-
tion and lifecycle with the resource management actions. The Deliverable also provided details
of the mangolibs runtime support library, which was introduced by the MANGO project and
implemented as a set of open source C++ libraries, with additional C bindings. We also de-
scribed a higher level interface with respect to the mangolibs C/C++ API, in the form of
Python bindings for mangolibs, effectively providing a form of Domain Specific Language (DSL)
in RECIPE, used to quickly explore possible API extensions as well as higher-level application-
specific constructs. As an example, the Python bindings will allow users to easily manipulate
an application’s recipe from within the application itself, which may be useful to allow a more
flexible definition of operating points to cope with unpredictable operating conditions. Finally,
the Deliverable covered low-level accelerator programming in RECIPE, targeting OpenCL for
both software-programmable and custom HLS accelerators.

References

[1] Giovanni Agosta, Alexandre Dray, José Flich, Edoardo Fusella, Giuseppe Massari, and Ma-
rina Zapater. D2.4 Report on WP2 Progress. Technical report, H2020 MANGO Project,
2017.

[2] Giovanni Agosta, Davide Zoni, Giuseppe Massari, Simone Libutti, José Flich, David Atienza,
Marina Zapater, Arman Iranfar, Mario Kovac, Josip Knezovic, V. Sruk, and Alessandro
Cilardo. D1.3 Report on MANGO Software Support. Technical report, H2020 MANGO
Project, 2016.

[3] P. Bellasi, G. Massari, and W. Fornaciari. A RTRM proposal for multi/many-core plat-
forms and reconfigurable applications. In 7th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), pages 1–8, July 2012.

[4] José Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza Alonso, Carlo Brandolese,
Etienne Cappe, Alessandro Cilardo, Leon Dragić, Alexandre Dray, Alen Duspara, et al.
Exploring Manycore Architectures for Next-Generation HPC Systems through the MANGO
Approach. Microprocessors and Microsystems, 2018.

[5] G. Massari, E. Paone, P. Bellasi, G. Palermo, V. Zaccaria, W. Fornaciari, and C. Silvano.
Combining application adaptivity and system-wide resource management on multi-core plat-
forms. In 2014 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV), pages 26–33, July 2014.

http://www.recipe-project.eu D2.4 RECIPE Application Programming Interface — 57

http://www.recipe-project.eu

	Runtime Managed Programming Models
	Adaptive Execution Model (AEM)
	Application requirements
	Run-time negotiation

	MANGOLIBS
	Application Architecture
	C++ API
	C Language API
	Sample Application: GIF FIFO
	Application Requirements
	Emulation Layer

	RECIPE Application Requirements

	Domain Specific Languages for RECIPE
	Python mangolibs API
	Example Application

	OpenCL mangolibs API
	Example Application

	Dynamic Compilation of Kernels

	Heterogeneous Acceleration Programming
	Implementation of OpenCL for the nu+ GPU-like programmable core
	OpenCL model on nu+
	Designing OpenCL Host-Runtime on nu+
	Compilation Support to OpenCL C Kernels

	HLS-targeted OpenCL programming interface
	OpenCL kernel design flow for FPGAs
	Improving Performance of OpenCL kernels

	Conclusions

