
REliable Power and time-ConstraInts-aware Predictive management of heterogeneous
Exascale systems

WP3 Predictive Reliability and QoS Enforcing
Methodologies

D3.2 Report on Predictive Reliability Techniques

http://www.recipe-project.eu

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No

801137

http://www.recipe-project.eu

Grant Agreement No.: 801137
Deliverable: D3.2 Report on Predictive Reliability Tech-
niques

Project Start Date: 01/05/2018 Duration: 36 months
Coordinator: Politecnico di Milano, Italy

Deliverable No: D3.2
WP No: 3
WP Leader: R. Canal
Due date: 31/10/2019
Delivery date: 07/11/2019

Dissemination Level:

PU Public Use X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Ser-

vices)
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 2

http://www.recipe-project.eu

DOCUMENT SUMMARY INFORMATION

Project title: REliable Power and time-ConstraInts-aware Predictive
management of heterogeneous Exascale systems

Short project name: RECIPE
Project No: 801137
Call Identifier: H2020-FETHPC-2017
Thematic Priority: Future and Emerging Technologies
Type of Action: Research and Innovation Action
Start date of the
project:

01/05/2018

Duration of the
project:

36 months

Project website: http://www.recipe-project.eu

D3.2 Report on Predictive Reliability Techniques

Work Package: WP3 Predictive Reliability and QoS Enforcing Methodologies
Deliverable number: D3.2
Deliverable title: Report on Predictive Reliability Techniques
Due date: 31/10/2019
Actual submission
date:

07/11/2019

Editor: J. Abella
Authors: R. Canal, M. Fusi, F. Mazzocchetti, L. Kosmidis, F.J. Cazorla, J.

Abella, M. Zapater, C. Hernandez, R. Tornero, J. Flich, G. Massari,
F. Reghenzani, M. Kulcewski

Dissemination Level: PU
No. pages: 39
Authorized (date): 07/11/2019
Responsible person: W. Fornaciari
Status: Final

Revision history:

Version Date Author Comment
v.0.1 14/09/2019 Outline and contributions identified
v.1.0 24/10/2019 First complete version
v.2.0 7/11/2019 Final version after internal review

Quality Control:

Who Date
Checked by internal reviewer R. Canal 25/10/2019
Checked by WP Leader R. Canal 25/10/2019
Checked by Project Technical
Manager

G. Agosta 5/11/2019

Checked by Project Coordinator W. Fornaciari 7/11/2019

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 3

http://www.recipe-project.eu
http://www.recipe-project.eu

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 4

http://www.recipe-project.eu

COPYRIGHT

©Copyright by the RECIPE consortium, 2018-2020.

This document contains material, which is the copyright of RECIPE consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 801137 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

RECIPE is a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 801137. Please see http://www.recipe-
project.eu for more information.

The partners in the project are Universitat Politècnica de València (UPV), Centro Regionale
Information Communication Technology scrl (CeRICT), École Polytechnique Fédèrale de Lau-
sanne (EPFL), Barcelona Supercomputing Center (BSC), Poznan Supercomputing and Net-
working Center (PSNC), IBT Solutions S.r.l. (IBTS), Centre Hospitalier Universitaire Vaudois
(CHUV). The content of this document is the result of extensive discussions within the RECIPE
©Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The infor-
mation contained in this document is provided by the copyright holders ”as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the RECIPE
collaboration, including the copyright holders, or the European Commission be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of the information
contained in this document, even if advised of the possibility of such damage.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 5

http://www.recipe-project.eu
http://www.recipe-project.eu
http://www.recipe-project.eu

Contents

1 Introduction 7

2 Reliability Methodology 8
2.1 General approach . 8

2.1.1 OS-based models . 9
2.2 CPU reliability estimation . 9

2.2.1 Intel support for occupancy and usage estimation 9
2.2.2 Raw FIT estimates . 10

2.3 GPU reliability estimation . 10
2.3.1 NVIDIA support for occupancy and usage estimation 10
2.3.2 Raw FIT estimates . 11

2.4 Reliability estimates in FPGA devices . 11
2.4.1 Raw FIT estimates . 11
2.4.2 Temperature measurements . 12
2.4.3 Computing Resources Utilization . 13

3 Timing Analysis 14
3.1 Execution Time Test Coverage Improvement for HPC 14

3.1.1 Memory-Placement Software Randomization 15
3.1.2 Code Randomization . 15
3.1.3 Stack Randomization . 17
3.1.4 Heap Randomization . 17
3.1.5 Summary . 17

3.2 Measurement-Based Probabilistic Timing Analysis for HPC 18
3.2.1 MBPTA-CV Fundamentals . 18
3.2.2 MBPTA-CV Steps . 19
3.2.3 Independence and Identical Distribution 20

3.3 Minimizing Network Interference . 22
3.3.1 Summary . 23

3.4 Related Work . 23
3.5 libta: A C++ library for MBPTA-CV Analisys 24

3.5.1 The API . 24
3.5.2 libta Flow . 25

3.6 Conclusions and Next Steps . 26

4 Thermal Modelling 28
4.1 System-on-Chip modelling . 28
4.2 Server/farm modelling . 30

5 RTRM Integration 32
5.1 Hardware Reliability library (libhwrel) . 33
5.2 Timing Analysis library (libta) . 34

6 Summary 35

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 6

http://www.recipe-project.eu

1 Introduction
High-Performance Computing (HPC) systems have become ubiquitous and are no longer concen-
trated in supercomputing facilities and data centers. While these facilities still exist and grow, a
plethora of HPC systems building on large multicores and accelerators (e.g. GPUs, FPGA-based)
are nowadays deployed for a variety of applications of interest, not only for large enterprises and
public institutions, but also for small and medium enterprises as well as small public and private
bodies.

The proliferation of HPC systems and applications in new domains has led to new requirements
related to non-functional requirements (time, power, reliability, temperature, etc) and the im-
plementation of platforms to satisfy them [4, 23, 22, 32, 38]. In this deliverable, we provide a
summary of the progress achieved in the following activities related to different QoS aspects, as
part of WP3:

• Reliability methodology. Our work to predict reliability concerns, developed as part of
T3.1, deals with the aging of the different hardware components of the platform to guide
application deployment and resource management, leveraging aspects related to the life-
time of the platform as a whole. This work is on track.

• Timing analysis. Timing predictions are key to make an efficient use of resources while
ensuring that each application is allocated enough resources to complete in time. Our
work in T3.2 provides means to perform those timing predictions. This work is ahead of
schedule and the method itself is already complete.

• Thermal modelling. Thermal modelling techniques to estimate chip temperature are re-
quired in order to enable the assessment of temperature-related reliability effects on chips.
Our work in T3.3 provides means to simulate and model chip temperature accurately with
the goal of proactively enhancing chip reliability.

• Applications characterization. This task has just started (1st of October), so there is noth-
ing relevant to report yet. Details on this topic will be provided in D3.6 in month 30
(October 2020).

• RTRM Reliability, Timing, and Thermal Policies Development. This work is at a pre-
liminary stage, since it spans from April 2019 to March 2021. Thus, we provide a brief
summary of the (limited) work done so far.

The rest of the deliverable provides details on the progress made in each front, except on appli-
cations characterization, as discussed before.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 7

http://www.recipe-project.eu

2 Reliability Methodology

2.1 General approach

Reliability at the system level needs to take into consideration the different -heterogeneous-
blocks that build it. In RECIPE, this means a system composed of a multicore CPU and several
accelerators (GPU and FPGA). Overall, the system should provide information (on the reliability
status of each block). For some blocks where the hardware provides more information, the
system can leverage more detailed information (e.g. for the CPU, we may distinguish between
the memory hierarchy and the processor core).

System reliability measurements will be done through the computation of the FIT rate (number
of failures in 109 hours of operation). System reliability may be computed as an aggregate of
multiple blocks (e.g. CPUs, caches, memories, accelerators . . .). Individual –independent- FIT
rates can be combined to a system by:

FIT =
number of failures

top

FITsystem =
N∑
i=1

(FITi)

Similarly, the FIT rate depends on the fundamental vulnerability of the block (also known as
raw FIT rate). From the raw FIT rate, there are several derrating factors in the system [43].
This effectively means that any fault in the circuitry, may not be visible to the architectural
state (i.e. on-chip code and values of the application being run). To take this into account, we
will use the Architecture Vulnerability Factor -AVF- which measures block occupancy. In short,
if there is a fault in a block we are not using (i.e. it does not hold the architectural state), then
it will not affect the system (i.e. it will be masked). AVF can be factored in in the FIT rate
computation as follows:

FITsystem =
N∑
i=1

(AV Fblocki ∗ FITi)

Finally, electronic circuits degrade over time. Among other causes, temperature is a key contrib-
utor. As degradation increases the FIT rate of components, we will factor it in as an acceleration
factor (Af) of the “operation” time (HMOL model [21]). Thus:

top + d = top ∗ Af

and Af is defined as:
Af = e

Ea
k

∗(1
Tuse

− 1
Tstress

)

where:

Ea is the activation energy (eV) of the failure mode (Ea = 0.7eV for transistors)

k is the Boltzmann’s Constant (k = 8.617x10−5eV/K)

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 8

http://www.recipe-project.eu

Tuse is use temperature (standardized at 55°C or 328°K)

Tstress is the stress temperature (higher than Tuse means stress, lower means recovery) (in ºK)

This model has been shown to adapt to different sources of acceleration (NBTI, HCI, TDDB,
electromigration) [20, 34, 35, 44]. If so, individual FIT rates for each source should be computed
and then aggregated (as seen in earlier in this section). This is a powerful model that will let us
incorporate different sources of degradation into our system-wide model.

2.1.1 OS-based models

Several efforts have been spent on using system error reporting logs to keep track of system status.
Thus, a fault has to manifest into a recovered error or a fatal error at the application/system
level. At the system level, these errors may be caused by faulty devices (our case), program
bugs/application errors (not our case) or system misconfiguration (not our case). Consequently,
system error reporting is not of use for the target of system reliability estimation as the reliability
information is hidden between other error causes.

Consequently, in RECIPE we propose to use detailed hardware measurements and the model
described in the previous section to unequivocally predict system reliability.

2.2 CPU reliability estimation

Given the model used in RECIPE, the CPU has to provide estimates of AVF as well as tem-
perature readings (for degradation). For AVF, we will use average block occupancy/usage to
compute AVF (being 0 not used at all, and 1 used always). Any value in between 0 and 1 reflects
that the block is partially occupied/used.

2.2.1 Intel support for occupancy and usage estimation

The target RECIPE platform uses Intel chips. Intel already provides several libraries that can
help compute the average occupancy/usage. The following is a list of the software packages/li-
braries that are relevant to our work:

• Intel Resource Director Technology [11]

– Cache Monitoring Technology (CMT)

– Memory Bandwidth Monitoring (MBM)

– Cache Allocation Technology (CAT)

– Code and Data Prioritization (CDP)

– Memory Bandwidth Allocation (MBA)

• Intel® Performance Counter Monitor [10]

– Includes power / thermal data

– Detailed CPU statistics

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 9

http://www.recipe-project.eu

Figure 1: Intel Libraries and Linux tool integration

Figure 2: Intel hardware support of monitoring libraries across generations

These software packages are directly accessible through the selected libraries. By using public
libraries, we want our runtime manager to be usable in all systems. Thus, we will favor the use
of public libraries and tools to extend the applicability of our results. The usage of the values
given by the tools is what defines the novelty of this project.

Some of these packages are already available in Linux systems. Figure 1 describes what is
available for each library and linux tool.

Finally, not all Intel chips provide the same level of hardware monitoring tools. Figure 2 lists
several available Intel chips available for at each partner’s server infrastructure.

2.2.2 Raw FIT estimates

RAW FIT rates for current technology is a very well kept secret for all companies. Yet, several
technology libraries/tools are able to compute it. This estimates are used widely in literature and
they allow for valid comparisons of FIT rates when using the same technology. Consequently,
we will use the RAW fit rates reported in [39] as they include 14nm FINFET devices (as the
CPUs under analysis).

2.3 GPU reliability estimation

Given the model used in RECIPE, the GPU has to provide estimates of AVF as well as tem-
perature readings (for degradation). For AVF, we will use average block occupancy/usage to
compute AVF (being 0 not used at all, and 1 used always). Any value in between 0 and 1 reflects
that the block is partially occupied/used.

2.3.1 NVIDIA support for occupancy and usage estimation

The target RECIPE platform uses NVIDIA GPUs. NVIDIA already provides several libraries
and a user-space tool (NVIDIA Data Center GPU Manager (DCGM)) that can help compute
the average occupancy/usage. The following is a list of the software packages/libraries that are
relevant to our work:

• NVIDIA Management Library (NVML) [12]

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 10

http://www.recipe-project.eu

– nvmlDeviceGetTemperature

– nvmlDeviceGetUtilizationRates

2.3.2 Raw FIT estimates

GPUs are implemented in the same underlying technology as its CPU counterparts. Conse-
quently, we will use the same raw fit rate as the CPUs. This approach is widely used in literature
and it allows for valid comparisons of FIT rates when using the same technology.

2.4 Reliability estimates in FPGA devices

FPGA devices are silicon-made and thus, reliability estimations in these devices also follow
Arrhenius model. In this subsection, we report FIT numbers as described in the FPGA datasheets
and vendor tools and describe how to measure FPGA device utilization and temperature. Finally,
we also discuss about the accuracy and limitations of these metrics.

2.4.1 Raw FIT estimates

The failure rate is typically defined in FIT units. One FIT equals 1 failure per 1 billion device
hours. For example, 5 failures expected out of 1 million components operating for 1,000 hours
have a failure rate of 5 FIT. Failure rate calculation equation is shown below:

FIT =
x2 ∗ 10−9

2(Num.Devices) ∗ (Time(hours)) ∗ Acc.Factor
(1)

where x2 is the Chi-squared value at a desired confidence level and 2f+2 degrees of freedom
where f is the number of failures. The Acceleration factor is calculated using the Arrehnius
relationship. Table 2.4.1 show FIT values for Xilinx devices at a different process technology
nodes [47].

Process Technology Device Hours at Tj = 125ºC FIT Device
16nm 1,143,159 10 UltraScale+TM
20nm 1,050,575 11 UltraScale+TM
28nm 1,044,069 11 7 series FPGAs and Zynq®-7000 SoCs
40nm 1,086,054 11 XC6VxXxxx
45nm 1,100,455 11 XC5VxXxxx

Intel FPGA reliability numbers are described in [13]. Unfortunately, this document, the latest
available that can be found in the web, does not provide information about the Stratix 10 device
that we are using in the FPGA prototype. However, as stated in that document, FIT rate and
mean time between failures (MTBF) information for devices within the same family with the
same process technology will be very similar. Following this advice, we can try to extrapolate the
FIT numbers for the Stratix-10 using the FIT values reported for other devices. Nevertheless,
the Stratix 10 uses a 14nm process and the smallest technology node reported by Intel in the
reliability report [13] is 20nm. We will monitor the Intel report for any updates.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 11

http://www.recipe-project.eu

2.4.2 Temperature measurements

The RECIPE prototype includes different FPGA devices namely an Intel Stratix 10 in a ProDe-
sign board, a Xilinx ALVEO U280 board, and the MANGO FPGA cluster that comprises sev-
eral types of Xilinx devices (KU115, Zynq Ultrascale, and Virtex V200T) included in modular
ProDesing boards. Each of these FPGA platforms is able to provide real-time temperature read-
ings but not all temperature sensor will have the same accuracy.

Xilinx ALVEO U280

To obtain temperature measurements using these devices Xilinx provides a system management
IP for on-chip voltage and temperature measurements. This IP generates an HDL wrapper to
configure the system monitor for user-specified internal sensor channels and alarms. We have
instantiated and tested this IP for the ALVEO 280 being able to obtain consistent temperature
readings at runtime.

Intel/Altera Stratix 10

The on-chip voltage sensor in the Intel Stratix 10 FPGA is an 8-bit full differential ADC that
provides built-in capability for on-die temperature monitoring. The internal digital temperature
sensor consists of internal temperature sensing diodes (TSD) and a built-in ADC. The user can
monitor the on-die temperature through the internal digital temperature sensor in the Intel
Stratix 10 but for this the Temperature Sensor Intel FPGA IP have to be instantiated in the
design. The Temperature Sensor IP core returns the Celsius temperature value in signed 32-bit
fixed point binary format, with eight bits below binary point. This value can be converted into
decimal by using two’s complement operation on the signed integer portion and adding the dec-
imal number to the unsigned 8-bit fraction. For example, if the returned value is 0xFFFFE1C0,
the temperature value is -30.25°C.

Since the Intel Stratix device is implemented in a ProDesign board, temperature reads have to
occur throught the mmmi64 interconnect provided by Prodesign. It is important to mention
that in this FPGA setup, the user is forced to implement the Stratix 10 temperature monitor
IP provided with the proFPGA HDL platform in every user design. The monitoring and fault
detection procedure is running in the monitoring System Controller implemented in the control
FPGA and microcontrollers included in the board. Note that ProDEsign boards do not only
include the FPGA devices for computation but additional control logic to monitor and guarantee
the reliability of the system. One second after the Stratix 10 has been configured, the monitoring
starts. If the IP is not implemented in the user design or an over temperature occurs due
to environmental or usage conditions, the Power supply of the Stratix 10 will be turned off
immediately and the temperature error LED will be activated. This mechanism prevents any
damage in the FPGA device due to overheating.

FPGA devices in the MANGO cluster

As in the case of the Stratix board, FPGA boards included in the MANGO protoype are from
ProDesign. This means that temperature reads have to be performed using the mmi64 inter-
connect. However, it is noteworthy to mention that FPGA devices in the MANGO prototype
do not include on-chip temperature monitors and thus, temperature reading from these boards
come from sensors implemented in these boards.

Software API

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 12

http://www.recipe-project.eu

Within the RECIPE prototype the HN daemon provides the temperature of the different HW
components of the system via API functions. This functionality is mainly implemented in a spe-
cific thread (hn temperature monitor) that periodically accesses the HW sensors of the different
components and stores the readings to later provide this values to the applications requesting
them. The HN daemon provides the temperature of the different FPGA modules, the mother-
board controller, and the motherboard clock network.

When an architecture is loaded into the HN system, the HN daemon generates a resource location
map to set where the resources are physically placed, so a user can directly get the HW mod-
ule temperature via the API functions as well as get the temperature of the HW component
where a resource is mapped with no need to know its physical location. The polling interval of
the readings can be specified by the user. The API also provides a set of functions to read the
current temperature of the HW components, but usage of this function is strongly discouraged
since accessing the HW sensors is a high time consuming task (tens of miliseconds per sensor).

2.4.3 Computing Resources Utilization

In FPGAs, similarly to other silicon devices as GPUs and CPUs, the utilization of the device
has an strong impact on its degradation. To measure utilization in FPGA devices included in
the RECIPE prototype we rely on the the performance monitoring counters provided by the
HN daemon. However, the information these monitors provides is significantly influenced by the
acceleration mode under which FPGAs are being utilized. In particular, as already defined in
D4.1, RECIPE FPGA accelerators can be employed according to the following modes: (1) full
custom RTL kernels,(2) HLS-based design implementation of certain kernels, (3) library-based
design and (4) software programmable vector soft-core accelerators. For (1) and (2) utilization
measurements reported by the HN daemon will occur at the granularity of the kernel, that is
considering the kernels is fully utilized or not utilized at all but not at a finer granularity. For
the acceleration modes (3) and (4) utilization measurements can occur at much finer granularity
since in this case computations occur in differentiated computing elements which are provided
with specific counters. Finally, it is important to mention that utilization values will have to be
weighted considering the area resources occupancy of the different resources. Fortunately, FPGA
CAD tools report these values after each implementation.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 13

http://www.recipe-project.eu

3 Timing Analysis
Timeliness is a key non-functional requirement. Timeliness can be expressed in the form of
strict real-time guarantees or quality-of-service (QoS), and is quite common in HPC applications
related to big data in general and sustained input processing in particular. For instance, the result
of a weather prediction or large simulation modeling the propagation of hazardous substances
after an accident, needs to be completed in a given short time frame in order to be useful.

So far, timing guarantees have been mostly of interest for embedded systems with some form
of criticality, such as those in avionics, automotive, space, industrial processes, etc. Therefore,
technology to estimate execution time bounds already exists. However, target systems for such
technology are often much simpler than those in HPC, and execution conditions are also far more
controlled, with single-threaded applications statically scheduled [33]. Hence, whether such tech-
nology fits the specific requirements of HPC systems is not yet studied and suitable techniques
offering sufficient scalability and flexibility need to be identified and used appropriately.

This section presents a methodology for the analysis of the timing behavior of HPC applications.
Our approach builds upon techniques based on memory layout randomization for increasing test
coverage [18, 24], as well as measurement-based probabilistic timing analysis (MBPTA) [17, 3]
to predict rare (high) timing behavior beyond those values observed in applications with a
continuous flow of (big) data. The contributions of this work can be summarized as follows:

1. Exploration of execution conditions. We adapt a software randomization layer for its in-
tegration in HPC applications to test their susceptibility to memory layouts caused by
different code, heap and stack allocations.

2. Worst-Case Execution Time (WCET) analysis. We analyze and fit an MBPTA technique
for WCET prediction so that it can be used in the context of HPC applications running
on high-performance systems.

The rest of this section is organized as follows. Section 3.1 assesses methods to increase execution
time test coverage and adapts them for the needs of the HPC domain. Section 3.2 reviews a
method for probabilistic WCET estimation used in the context of critical real-time embedded
systems, and tailors it for its use in HPC systems. Related work is reviewed in Section 3.4.
Finally, Section 3.6 summarizes the work in this section.

3.1 Execution Time Test Coverage Improvement for HPC

Predicting how much an application can take to run requires the use of representative execution
time tests during the analysis phase. However, a number of execution time conditions are hard
– if at all possible – to control or even to track, so that it turns out to be virtually impossible to
relate execution time measurements in the analysis phase with those that may occur once the
system has been deployed.

Difficulties arise from the way the Operating System (OS) places code, stack and heap data in
memory, and the impact that such allocation has on cache behavior, contention in the access to
shared hardware resources (e.g. the memory controller, or shared cache buses and buffers), among
other effects. Therefore, performing an arbitrarily large number of experiments during analysis
does not guarantee, in general, covering execution time conditions relevant during operation since

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 14

http://www.recipe-project.eu

those analysis conditions may preclude, by construction, some specific memory allocations that
may lead to high execution times. Hence, the lack of controllability of those effects, which are
managed in non-obvious ways by the OS, defeat any attempt to predict execution times based
on test campaigns that lack means to trigger specific timing conditions. In order to address
this challenge, some techniques based on (memory placement) software randomization have
been proposed with the aim of enabling probabilistic coverage of the different execution time
conditions [18, 24]. Those techniques randomize the physical location of code and data in memory,
which indirectly randomizes their placement in cache and hence, their hit/miss behavior.

3.1.1 Memory-Placement Software Randomization

This set of techniques, which we refer to as SWrand for short, aims at exploring arbitrary
memory placements, which ultimately determine cache behavior for both, code and data. The
randomization of the memory placement can alter the hit/miss behavior and the possible con-
tention experienced in the access to shared resources -when accessed by other applications or
other threads of same application; and thus, it can affect the execution time of the application
under study.

There are different incarnations of SWrand, depending on whether randomization is introduced
dynamically in the different runs of a single binary, or whether memory placement is performed
statically at compile-time (and thus; we need to generate multiple instances of the binary each
one with a different random placement). The latter, often known as static SWrand [25, 26],
randomizes the location of the different objects at run-time, thus removing any type of indirec-
tion during execution, or code copy to different memory locations, which is against some basic
principles for critical real-time embedded systems. In our context, HPC systems are not subject
to the same set of strict constraints as critical real-time embedded systems since they do not
have to undergo any strict functional safety certification and hence, the most flexible incarna-
tion of SWrand – dynamic SWrand [18, 24] – can be used instead. Such dynamic SWrand is the
approach we detail next, emphasizing how it fits the proposed methodology.

3.1.2 Code Randomization

SWrand copies functions’ code at random memory locations during execution with the objective
of randomizing their cache placement and hence, how code conflicts in first level (L1) instruction
caches with OS code, dynamic libraries and other applications, and additionally with data in
caches shared amongst code and data. This is illustrated with the scheme in Figure 3. The plot
in the left shows how functions fa and fb are allocated in memory without SWrand, and fb
calls fa. On the right, we observe how functions are randomly placed in memory and function
calls replaced by indirect calls whose pointers in the caller are replaced with the newly allocated
location of the callee. We refer the interested reader to the original publication for further
details [24].

There are two main ways to perform code randomization: at initialization or at call time [16].
The former performs the copy of all functions to random locations and the arrangement of all
pointers for indirect calls before starting the execution of the code in the main function. This
incurs in some overhead to copy those functions that will never be called. To mitigate this
overhead, the latter approach performs a lazy allocation so that pointers for indirect calls are
not set at initialization and, instead, every time a function is called, it is checked whether the

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 15

http://www.recipe-project.eu

Figure 3: Schematic of code randomization.

pointer has already been initialized. If this is the case, then the function has already been called
before. Otherwise, it is the first function invocation and hence, the code is copied into a random
location opportunistically and the pointer is set accordingly.

Note that in both cases, some memory is allocated from the heap in a random location to copy
the code in it. Such random location is not selected across the whole memory space for the sake
of efficiency and, instead, it is limited to an offset of, at most, the size of one cache way of
the largest cache in the system. Within such region, random placement is performed. Note that
using a random allocation across a larger space does not bring further benefits since the sets
where code is effectively placed in cache are obtained with the address modulo the size of the
cache way.

In order to use this technique in the context of HPC applications, which may be potentially
multi-threaded, we note that opportunistic allocation at call time cannot be used since one
thread will set a pointer on a function call (in local memory space). Consequently, this specific
memory address may not be visible by the other threads or may bring inconsistency problems
needed for explicit synchronization. Instead, if code randomization is performed at initialization
time before threads are spawned, we eliminate this problem by construction.

Observation 1. Code randomization must be applied at initialization time for HPC sys-
tems.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 16

http://www.recipe-project.eu

3.1.3 Stack Randomization

Dynamic stack randomization builds upon placing the function stack at a random location for
each function. This can be done using indirections and allocating the stack from the heap, as
in the case of code [24]. In particular, the solution builds upon having a pool of preallocated
stack frames that are given to the functions called on demand. However, in the context of HPC
applications, which may run multiple threads simultaneously, managing a pool of stack frames
imposes the use of synchronization primitives and may decrease performance due to sharing such
pool.

Static SWrand [26, 25], instead, builds upon inserting padding (e.g a random size -but constant
for each binary produced dummy variable) at the beginning of the stack frame so that the
location of the data used from the stack is effectively random. While such a solution imposes a
fixed stack frame location for each function, and thus not random across calls, we use a dynamic
variant of it, where the padding created is sized randomly on each invocation locally for each
function, again limited to the size of the largest cache way in the system. Since data is kept in
the local stack frame of the thread, no synchronization is needed across threads.

Observation 2. Stack randomization must be applied independently for each thread with
a random shift of the stack on a function invocation for HPC systems.

3.1.4 Heap Randomization

SWrand, by default, does not consider heap randomization per se since, critical real-time em-
bedded systems are not allowed to allocate memory dynamically. Hence, specific randomization
for heap objects is not needed as a goal. However, SWrand builds upon random heap object
allocation provided by Stabilizer [18], a compiler pass developed within the LLVM compiler
and a runtime system based on Die-Hard[5] and Heap-Layers[6] providing random allocation of
objects.

In the case of HPC applications, dynamic memory allocation is allowed. Building upon a central-
ized memory allocator for the heap imposes the use of synchronization. Whether such memory
allocator is randomized or not is irrelevant in this respect and hence, SWrand does not bring
any additional constraint and can be used for HPC applications regardless of whether they are
single- or multi-threaded.

Observation 3. Heap randomization does not impose any additional constraint for HPC
applications.

3.1.5 Summary

Overall, SWrand can be used for HPC applications, even if they are multi-threaded. However,
specific considerations need to be taken into account for code and stack randomization, as de-
tailed above. Once those considerations are taken into account, SWrand provides means to test
any cache placement probabilistically, which calls for appropriate probabilistic means to ana-
lyze execution times obtained with SWrand-based test campaigns. The next section reviews an
MBPTA method, as needed to analyze randomly sample execution time measurements, making
considerations for its reliable use in the context of HPC applications.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 17

http://www.recipe-project.eu

Figure 4: Example of pWCET distribution.

3.2 Measurement-Based Probabilistic Timing Analysis for HPC

A number of methods have been proposed for MBPTA [7]. Amongst those, MBPTA-CV [3] offers
a detailed explanation of its implementation details as well as a publicly available implementa-
tion [1]. Therefore, we consider MBPTA-CV as the basis of our work. In this section, we review
its main steps and assess their applicability in the context of HPC applications.

3.2.1 MBPTA-CV Fundamentals

MBPTA in general, and MBPTA-CV in particular, builds upon Extreme Value Theory (EVT) [9,
27], a branch of Statistics aiming at predicting rare events beyond those observed in an input
sample. In the context of MBPTA, EVT is used to deliver a probabilistic WCET (pWCET) or,
in other words, a distribution for high execution times so that the pWCET curve can be used
to determine the probability of exceeding any particular execution time. Such pWCET curve
is normally depicted as a Complementary Cumulative Distribution Function (CCDF), as the
example shown in Figure 4, where the red dotted line corresponds to a sample of 1,000 execution
time measurements and the black straight line the pWCET curve. The y-axis corresponds to the
exceedance probability (in logarithmic scale), and the x-axis shows execution time in seconds.
For instance, we observe that the probability of exceeding an execution time of 7.4 seconds is
up to 10−12 per run.

MBPTA-CV uses the residual coefficient of variation (residual CV), where the CV for a given
distribution is obtained as the ratio between its standard deviation and its mean, and the residual
CV has been shown to determine the type of the tail of the distribution: CV = 1 for exponential
tails, CV ≥ 1 for heavy tails and CV ≤ 1 for light tails [19]. It has been shown that heavy tails
are not appropriate for programs with finite execution times [7], and no solution has succeeded
at using light tails for pWCET estimation so far, so the only reliable type of tails applicable to
any program with finite execution time generally corresponds to exponential tails.

Such residual CV can be estimated with the empirical residual CV using the observed mean and
standard deviation from a sample rather than theoretical parameters, and used to produce the
CV-plot, which estimates the CV for each number of exceedances of a sample. An example of a

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 18

http://www.recipe-project.eu

Figure 5: Example of CV-plot.

Figure 6: MBPTA-CV process to obtain pWCET estimates.

CV-plot is shown in Figure 5. The x-axis shows, for a sample of 1,000 measurements, out of which
the 500 lowest values are discarded, from left to right the number of exceedances discarded. For
instance, when the x-axis indicates 400, it indicates that only the highest 100 values of the sample
are retained, and the blue line indicates the estimated CV for those exceedances. The red lines
include the range of values where the exponentiality assumption for the tail cannot be rejected
with 95% confidence. If the blue line is below both red lines, then exponentiality is rejected and
the tail is regarded as light. Hence, in this case using exponential tails is pessimistic but reliable
for pWCET estimation. However, if the blue line is above both red lines, then exponentiality is
rejected and the tail is regarded as heavy, thus meaning that exponential tails cannot be used.
In the case of MBPTA-CV, the CV-plot is used to guarantee that the set of highest values used
for pWCET estimation can be approximated with an exponential tail reliably.

3.2.2 MBPTA-CV Steps

Next, we review the steps of the MBPTA-CV process and assess their fit for HPC applications
on HPC systems.

Input Sample Generation MBPTA-CV application process starts with the collection of an
execution time sample. In the default application of the method, such sample must have at least

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 19

http://www.recipe-project.eu

100 execution time measurements, although, in general, the larger the sample, the higher the
chances to converge and deliver a pWCET estimate. Moreover, in general, larger samples have
more information about the distribution and hence, pWCET estimates obtained will be tighter.

Depending on the duration of the HPC application under analysis and the computing resources
available, the number of measurements that may be collected may vary. We note that MBPTA-
CV requires 100 measurements because the lowest half is discarded considering that they are not
appropriate to predict high execution times, and at least 50 measurements (maxima) are needed
to derive a highly reliable pWCET estimate, as needed for critical real-time embedded systems.
However, as noted by the authors in [3], different applications of EVT allow the minimum
number of maxima used to fit a tail to be between 10 and 50. Therefore, we note that, although
the reliability and tightness of the pWCET distribution may decrease, using samples of only
20 measurements is still possible – with the lowest half being discarded – while having a sound
application on MBPTA-CV. Note that, in this case, the 10 maxima should allow fitting a tail
reliably. Otherwise, a larger sample would be needed until having at least 10 maxima allowing
such reliable tail fitting.

Observation 4. The lowest number of execution time measurements to use MBPTA-CV
for HPC applications can be decreased down to 20, instead of 100.

3.2.3 Independence and Identical Distribution

Input data must be independent and follow an identical distribution (i.i.d.), which, in practice,
means that execution time measurements have been collected with the same initial conditions.
For instance, this is achieved by collecting execution times for the HPC application on the same
system resetting any state remaining from previous executions before each experiment, and using
either the same input set or choosing the input set randomly out of a pool of relevant input sets.

In the context of HPC systems, while we can control input data and some state for the application
under analysis, some other activities (e.g. periodic OS services) may not be sufficiently controlled
and may affect differently each execution measurement. Moreover, such impact may be periodic,
so that i.i.d. properties across measurements do not hold. However, as shown in [31], i.i.d.
properties do not need to hold for all measurements but only for maxima (i.e. the subset of
measurements above a given threshold used to draw the tail with EVT). This, in essence, implies
that the impact of those OS services must have a sufficiently low relative impact not to make
non-maxima become maxima. In general, OS services may take up to few milliseconds to execute.
Hence, by analyzing applications whose execution time is some orders of magnitude higher (e.g.
hundreds of milliseconds or more), the impact of OS noise becomes irrelevant in practice. Still,
i.i.d. properties of maxima need to be statistically tested for a reliable application of EVT as
part of MBPTA-CV.

Observation 5. I.i.d. properties may not hold for HPC applications, but, as long as execu-
tion time is large enough, i.i.d holds for maxima, which is enough for a reliable application
of MBPTA-CV.

Exponential Tail Test MBPTA-CV, as explained before, builds upon the CV-plot to test
whether the maxima retained for pWCET estimation are compatible with the exponential as-

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 20

http://www.recipe-project.eu

sumption. In other words, such maxima is regarded as acceptable if maxima are either compatible
with exponential or light tails, since both are reliably upper-bounded with exponential tails. If
maxima in the sample fails to fulfill such statistical criteria, since the distribution under anal-
ysis must meet this probabilistic property by construction, a larger sample is requested until,
eventually, it converges.

The particular method considered, MBPTA-CV, in fact, imposes that not only those maxima
used for pWCET estimation must be compatible with the exponential assumption, but also
smaller sets of maxima with at least 10 measurements1. Since MBPTA-CV imposes the use
of at least 50 maxima, then all sets of maxima between 10 and 50 elements must pass the
exponentiality test (i.e. have the CV estimator below the top red line for all those sets of
maxima). As discussed for the sample generation, fitting the tail with only 10 maxima, while
less reliable, it is still acceptable based on common practice. Hence, the exponentiality test
provided by the CV-plot is also restricted to such set of maxima, which facilitates passing it.

Observation 6. The exponential test may be less demanding for HPC applications if
the smallest set of maxima to estimate the pWCET distribution is decreased below 50
measurements (being at least 10).

Select the Best Tail Once there is at least a set of maxima passing the exponentiality test,
selecting the best set of maxima is an arbitrary choice statistically speaking since any set is
equally statistically valid, as pointed out in [3]. In the case of MBPTA-CV, out of all sets
of maxima passing the test, the one with a CV estimator closer to 1 (the expected value for
exponential tails) is used. In the case of HPC applications, there is no particular reason to change
this criteria.

Observation 7. The criteria to select the best tail remains unchanged for HPC applications.

pWCET Estimate Once determined the set of maxima to use for pWCET estimation, fitting
an exponential tail is an automatic step independent of any other consideration, such as, for in-
stance, the application under analysis or the domain of such application. However, the particular
exceedance probability to consider may change across domains. In the case of critical real-time
embedded systems, such probability normally relates to acceptable failure rates or residual risk
as determined in the particular functional safety standard in the domain.

In the case of HPC applications, in general, no such standard exists. In general, those appli-
cations, rather than safety critical, are mission critical, thus meaning that a failure to execute
properly diminishes the success of the mission. For instance, acceptable failure probabilities for
safety-critical systems may be in the order of 10−12 per run, whereas an HPC application pro-
cessing, for instance, soil data to detect appropriate locations to set oil wells may afford higher
failure probabilities (e.g. 10−6 per run).

Observation 8. Exceedance probabilities acceptable for HPC applications may differ from
those usually considered for critical real-time embedded systems.

1Based on common practice, smaller sets of maxima (i.e. 9 measurements or fewer) are regarded as unreli-
able [3].

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 21

http://www.recipe-project.eu

3.3 Minimizing Network Interference

pWCET estimates will hold valid if the execution time conditions at which measurements of the
application under analysis were taken do represent a worst-case condition scnenario. However, in
the context of HPC systems this is difficult to achieve. Previous sections focus on capturing the
variability of application execution time variability caused by software libraries and OS effects.
Unfortunately, there are other sources of execution time variability affecting execution time that
cannot be captured using those means. In particular, the effect that other applications running
in the system or maintenance tasks have in the application has a significant impact in execution
time. The impact of co-running applications can be mitigated at the resource manager level by
preventing the allocation of computing resources within the same node for applications when a
critical application is already executing in this node. Howevever, even if we avoid these situations
execution time variability can exist due to interference in the network since in the HPC system
there will be other shared resources such as distributed file system that will be accessed through
the same interconnection medium. At the same time, maintance/monitoring tasks occurring in
parallel with the execution of a critical application will necessarily interfere with our application
at the network level.

To control the impact of network interference or even remove it we rely on the utilization of
Infiniband specific quality-of-service features. Infiniband is a low-latency and high-bandwith
interconnection network commonly used in supercomputing facilities that also favours having
predictable behavioru in the execution time of applications. In RECIPE, the severs are connected
utilizing Infiniband card adapters which can be configured to isolate critical applications. To
do so, we have to exploit the Service Levels(SL) features provided by this network. Within
Infiniband SL are mapped to specific virtual lanes (VL) and VLs are arbitrated using a 2-level
weighted round-robin arbiter. In the first level arbitration we find the high-priority flows and in
the second layer the low-priority flows. Within each arbitration layer different weights can be
given to specific VLs to achieve different levels of service. Since our intention is to minimize or
even remove network interference we define a service level SL=0 with the highest possible level
of priority and allow only the critical application to use this service level. To do so, the following
configuration has to be employed in the Infiniband subnet manager configuration file:

qos_max_vls 15

qos_high_limit 255

qos_vlarb_high 0:255

qos_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64

qos_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

The previous configuration defines a high limit of 255 and puts only VL 0 as a high priority
channel. In general, the value of the high limit represents the amount of packets from the highest
priority level that can be sent before a low priority level packet is sent but when this value is set
to 255 it means that high-priority levels will be always prioritize. Note that this configuration
may cause starvation in theory, however, this will only occur if it always exist a packet of the
high critical task to be sent and this is something we can ensure it will never happen when
profiling our application.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 22

http://www.recipe-project.eu

With the previous configuration we ensure that comunications using VL=0, that is mapped
to SL=0, will have always priority over other communications. Then, we have to allow only a
critical application to use SL=0. This can be easily implemented for MPI applications when the
application is launched (mpirun -sl 0). Although, in RECIPE, we will control QoS features at
the runtime resource monitor level. At the same time, to avoid other communications to use SL
0 we have to configure the system to to force other services to default to other SLs. This can be
done in a qos policy file specifiying the following directives:

qos-ulps

default : 0

any, target-port-guid MYPORT_HEX

end-qos-ulps

For instance, assuming we have a in our system a Lustre distributed file system we can configure
Infiniband to force all communications to default to SL 1 and thus, avoid interferences from the
accesses to the file-system.

Note that D4.4 explains how to install and configure Infiniband drivers so that the previous
configurations can be employed.

3.3.1 Summary

As described in this section, the use of MBPTA-CV in the context of HPC applications is
viable as long as particular considerations are taken into account. Those considerations relate
to choosing appropriate sample sizes, with less demanding criteria than for critical real-time
embedded systems, and appropriate measurement collection protocols to achieve i.i.d. at least
for maxima. Constraints for exponentiality compliance can also be decreased, and acceptable
exceedance probabilities may be, in general, higher than those for critical real-time embedded
systems.

3.4 Related Work

The critical real-time embedded systems domain is prolific in techniques for WCET estimation.
A family of techniques is based on the static analysis and abstract interpretation of the software
under analysis on a timing model of the hardware platform [45]. However, it has been shown
that those methods are appropriate for very simple microcontrollers [2], far simpler than those
in HPC systems.

On the other side of the spectrum, we can find measurement-based timing analysis techniques,
which have been used in many real systems due to their flexibility and portability to virtually
any platform [33]. Most of those techniques aim at estimating a deterministic WCET estimate
that must hold under any circumstance, which often leads to a tradeoff between reliability and
tightness. In general, those approaches build upon collecting execution time measurements and
adding an engineering margin on top of the maximum observed execution time, whose reliability
is hard – if at all possible – to assess [2].

Still in the area of measurement-based timing analysis techniques, a new family of techniques
has been proposed, building on probabilistic principles to derive a pWCET rather than an
absolute bound [7]. Those techniques build upon appropriate measurement collection protocols

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 23

http://www.recipe-project.eu

as well as, potentially, on specific platform support – either hardware or software – to increase
the representativeness of the tests used for pWCET estimation. Amongst those techniques,
in this work we focus on MBPTA-CV [3], since a detailed method description and an actual
implementation are publicly available.

Most MBPTA methods build upon the assumption of independent data or, at least, independent
maxima. However, some works have shown that some weak dependence can also be acceptable [9,
40].

Finally, to the best of our knowledge, no specific methods have been devised to predict reliably
high execution times of HPC applications. Hence, our adaptation of a mechanism – MBPTA-
CV – used in another domain to fit the needs and constraints of HPC systems is a pioneering
attempt to reach the goal of reliable and tight estimation of execution time bounds for HPC
applications.

3.5 libta: A C++ library for MBPTA-CV Analisys

libta [8] implements the technique of MBPTA-CV [3] in a header-only library. The library is
template-based, so it is possible to support generic data structures. Error handling is performed
through the Either class taken from the neither library [30], which offers a modern way of
handling errors without the need of using return codes nor exceptions.

3.5.1 The API

The API is contained with the libta namespace. In this section, such a namespace is not
specified before class and method names for the sake of conciseness of the showed headers. The
reccomendation is to use float and double datatypes to process data. Using long double may
slow down the computation significantly.

The Request class represents the input for the library. It wraps a std::vector, but it may be
easily changed if needed. These are the public methods:

Request<T>(): Empty class constructor.

std::vector<T>::iterator begin(): Begin iterator for for-range-loops.

std::vector<T>::const iterator cbegin() const: Const begin iterator for for-range-loops.

std::vector<T>::iterator end(): End iterator for for-range-loops.

std::vector<T>::const iterator cend(): Const end iterator for for-range-loops.

void add value(const T &time): Add new values to the timing array.

const std::vector<T> & get all() const: Getter for the whole timing array.

int get size(): Get the number of added values.

The Response class is a generic interface of the responses produced by the libta API. Most of
the times it used to report errors, except for the ResponsePWCET<T> sub-class, which reports a
valid timing estimate given an input probability. Figure 7 shows the inheritance diagram related
to the Response class and the following list breafly describes the meaning of each Response:

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 24

http://www.recipe-project.eu

Response

ResponseInvalid

ResponseInvalidData ResponseInvalidDistribution

ResponsePWCET<T>

Figure 7: Inheritance diagram of Response.
–

Response: A generic response.

ResponseInvalid:A generic response with a string message.

ResponseInvalidData: This is returned when the a request cannot be used to estimate a
distribution.

ResponseInvalidDistribution: This response is returned when it is not possible to produce
a pWCET with a given distribution.

ResponePWCET<T>: A response obtained by succesfully getting a pWCET estimate.

The class EVTDistribution<T> represents an estimate of a heavy-tail distribution obtained
by processing a Request<T>. A user should produce an EVTDistribution<T> instance using
the DistributionAnalyzer class. This class offer the following public methods (note that the
data type EitherPWCETResponse<T> is an alias for Either< ResponseInvalidDistribution,

ResponsePWCET<T> >):

EitherPWCETResponse<T> getPWCET (T probability) const: Get the execution time that
exceeds with the given probability.

EitherPWCETResponse<T> getPWCETLow (T probability) const:Get the execution time that
exceeds with the given probability with risky assumption.

EitherPWCETResponse<T> getPWCETHigh (T probability) const:Get the execution time
that exceeds with the given probability with safe assumption.

T getMaxExecutionTime () const: Get the collected maximum execution from the real val-
ues.

const std::vector< T > getTailValues() const: Get the real values used for the tail
estimation.

DistributionAnalyzer is responsible of the production a heavy tail estimate through the
estimate distribution method, which requires a shared pointer that references a Request

and a const int rank length that tells how many points the output distribution should
have. Setting a higher value of rank length increases the accuracy of the result, but it slows
downs the production of the curve. Such a method returns a Either< ResponseInvalidData,

EVTDistribution<T> > instance.

3.5.2 libta Flow

The standard usage of libta is shown in the Flow-Chart present in Figure 8. At first, a new

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 25

http://www.recipe-project.eu

(1) Fill Request req

is ResponseInvalidData

(2)
dist= DistributionAnalyzer().estimate_distribution(req,

10000)

is EVTDistribution<T>

(3)
check type

of dist

(4) estimate = dist.getPWCET(p)

is ResponseInvalidDistribution

is ResponsePWCET<T>

5)
check type of

estimate

(6) print(estimate)

Figure 8: Flow-chart of the usage of libta to collect the minimum execution time that can be
observed with a given probability p.

–

instance of Request must be created and filled with samples the represents the execution time
of a target (step 1 in the previously mentioned Figure), then the estimate distribution

method of the DistributionAnalyzer class produces an estimate of a heavy tail distribution
in a EVTDistribution instance if it’s possible to apply the MBPTA-CV on the given input,
otherwise it returns a ResponseInvalidData (steps 2 and 3). This may happen if one of the
number of CV values valid for estimating the heavy tail is smaller or equal than 10. If a valid
distribution is returned, now it is possible to ask to the distribution the minimum execution
time that can be observed with input probability p by calling the getPWCET method (step 4).
If it’s possible to compute such a value, then a ResponsePWCET instance is returned, other-
wise a ResponseInvalidDistribution is what the programmer will get (step 5). Note that
ResponseInvalidDistribution is not used in the API yet, but this may change in the future.

3.6 Conclusions and Next Steps

The availability of HPC platforms nowadays has led to a plethora of HPC applications in a
variety of domains and contexts. Such ubiquity of HPC has made a number of new requirements
emerge. Out of those, timing guarantees are particularly important for a number of applications
with real-time needs.

This work shows how some techniques based on software randomization and MBPTA, if used
reliably, allow performing extensive and representative execution time test campaigns for HPC
applications and predicting high execution times.

The next steps consist of evaluating this approach in, at least, one of the use cases of RECIPE
(UC1 in particular) to validate the effectiveness of the solution, as well as perform a full inte-

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 26

http://www.recipe-project.eu

gration of this tool in the runtime resource manager to facilitate the effective management and
execution of HPC applications atop.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 27

http://www.recipe-project.eu

4 Thermal Modelling

4.1 System-on-Chip modelling

Thermal modelling within RECIPE is required to first enable the development of thermal-aware
policies but also, and more importantly, to enable the evaluation of thermal effects on the long-
term reliability of servers. Within WP3, thermal models of processors and servers are developed,
that are then used in WP2 for the development of thermal and reliability aware management
policies at the server level.

In particular, thermal stress and spatial gradients are proven to have a negative effect on the
long-term reliability of Multi-Processors System on Chip (MPSoCs) [14], impacting their FIT
rate [29]. Temporal Temperature Gradient (TTG) can be defined as the rate of temperature
changes over time. For a given time, the rate of the temperature changes from one point to
another indicates the spatial temperature gradient (STG). Both STG and TTG pose a critical
impact on the system lifetime reliability, but STG is mostly affected by the power and thermal
management techniques applied at the overall MPSoC system, i.e., the allocation and specific
setup of all cores in the system need to be taken into consideration. In contrast, TTG is mostly
affected by the core frequency and the workload running in each specific core.

Thermal cycling is the phenomena which takes place when the temperature rises up (or drops
down) and goes back to the initial value (which can be defined as a thermal cycle) frequently [46].
MTTF reduction due to thermal cycling occurs due to the mismatch on the expansion coefficient
between the layers of the chip, which results in thermo-mechanical stresses. Thermal cycling (TC)
tends to reduce the whole system MTTF as the number of cycles or amplitudes increases. Large
amplitudes are normally induced due to improper task scheduling on a single core. Number of
thermal cycles increases especially by the power management techniques which frequently turn
cores on and off [15].

All in all, in order to reliably estimate the MTTF of a system, we need ways of modelling
and simulating temperature in a spatio-temporal way. In this sense, simulators such as the 3D-
ICE tool developed as part of the previous work of EPFL can help in accurately modelling
these effects [41]. However, in order for this tool to work efficiently and accurately within the
framework of RECIPE, there is a need to incorporate the following enhancements:

• Enabling the simulation of arbitrary state-of-the-art cooling mechanisms, such as the ones
found in current servers. In particular, within RECIPE we need to enable the simulation of
both natural convection mechanisms (i.e., heatsinks), and forced convection cooling (i.e.,
heatsinks plus fans).

• Proposal of a methodology that will allow us to assess the impact of the main control knobs
related to temperature in today’s servers, which range from workload allocation, DVFS
setting and fan speed control policies. This methodology needs to exploit the capabilities
of our simulation tool.

• Proposal of a methodology to adequately link the thermal aspects to the reliability of the
system. For this purpose, we will use the MTTF and reliability models proposed by T3.1,
which will be incorporated into the policies developed by EPFL in both T3.5 in WP3 and
T2.3 in WP2.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 28

http://www.recipe-project.eu

Figure 9: Thermal modelling methodology to enable DTM and reliability management

Based on the previous work released in v2.2.6 of 3D-ICE (project background), within this task
of RECIPE, we have developed both the natural convection (heatspreader plus heatsink) and
the forced convection (heatsink plus fan) models, using a real Thermal Test Chip (TTV) , for
real chips and cooling devices, using real traces. This contributions are released in v2.2.7 of
3D-ICE. We plan to release v2.2.8 in the near future, incorporating both the natural and forced
convection models developed. The details of the pluggable heatsink and its integration with
3D-ICE will be described as part of Deliverable D3.5.

Furthermore, to create accurate models of the system, we need ways of validating them against
real devices. For this purpose, within the RECIPE project we have also created a platform
which comprises a real test chip [42] for accurate thermal characterization. In particular, this
platform is based on a Thermal Test Chip (TTC), an integrated circuit containing an array
of power dissipating elements and an array of temperature sensors. Our thermal platform is
capable of applying a generic power dissipation pattern to the thermal test chip and measuring
the corresponding temperature map, at a rate up to 1 kHz. This capability allows to measure
the temperature map of an integrated circuit subject to reference power dissipation maps, and
thus to design and validate thermal models. In our particular case, the chip is organised as a 4
by 4 array of individual cells, each capable of temperature sensing and power generation through
a resistive element. The heating element in each cell is capable of dissipating up to 12 W. This
allows to simulate the equivalent of a 16-core chip with a total power dissipation of 192 W.

The methodology for envision for enabling DTM and reliability management is the one depicted
in Figure 9. The simulator will enable us perform an exploration of the impact of aggressive
DTM management policies which may not only cause performance degradation and additional
power consumption, but more importantly, jeopardizes lifetime reliability of the whole system.
In fact, one of the main reasons that makes researchers reluctant to consider fan speed control
as a key DTM approach is the lack of a transient thermal simulator for MPSoCs with proper
integration of fans. The incorporation of fan models in 3D-ICE, and the use of this methodology
provides a comprehensive framework for exploring thermal effects of DTM policies in a safe way.

Workload allocation, DVFS and fan speed altogether drastically increase the number of runtime
design parameters to be decided by a DTM and reliability-aware policy, which leads to additional
challenges to find the best values for optimal behavior of the whole system. Our methodology
enables the exploration of this design space in an automated way. In particular, we envision the

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 29

http://www.recipe-project.eu

Figure 10: Analysis of the airflow inside a chasis

use of Reinforcement Learning (RL) techniques in WP2. The RL agents can explore the design
space using 3D-ICE and combine that with the impact of reliability. Initial experiments [42],
prove the feasibility of our approach.

4.2 Server/farm modelling

PSNC contributes to thermal models ranging from single processing units through the comput-
ing nodes and racks up to whole server rooms, including models of cooling equipment. Thermal
models at processor scale benefit from Newton’s law of cooling supported by the duality between
thermal and electrical phenomena. The model considers surrounding temperature, CPU power
state, its thermal capacitance and resistance characteristics. The latter one reveals the impact of
cooling system on CPU thermal behaviour. By these means, the rapidity and the rate of temper-
ature changes towards reaching the stable value for a given state can be described. Additionally,
proposed models utilize a well-known heat transfer formula and the law of energy conservation
to describe the mutual impact of neighbouring nodes. Last but not least, the models allow in-
corporating power leakage function specifying the CPU power usage due to the increase of its
temperature. A detailed description of the aforementioned models can be found in [36] and [37].
At higher levels, the models are used to estimate temperature of the air leaving nodes/racks and
the thermal settings required to cool the servers. In this way they enable calculations of cooling
equipment in efficiency and power usage. All these models are incorporated into the DCworms
simulation toolkit [28], developed by PSNC, dedicated to modelling and simulation of computing
infrastructures to estimate their performance, energy consumption and energy-efficiency metrics
for different applications and management strategies. Moreover, these models are bidirectionally
supported with the CFD simulations, in order to verify thermal state of given IT components
and identify the possible hotspots. The example results of CFD airlow analysis and temperature
are presented in figures 10 and 11.

At the infrastructure (i.e. data center) level we are developing a CFD-based simulation frame-
work, build around OpenFOAM software that supports and facilitates the process of model
creation and definition of simulations settings. Models and simulations results for different hard-
ware architectures and levels may be provided. A number of thermal and power data, obtained

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 30

http://www.recipe-project.eu

Figure 11: Analysis of the temperature inside a server room

via the experimental results, may be used to verify and tailor thermal models. These results
can be also applied directly as input data into the aforementioned simulation environments.
Within the project, models developed by will be combined with the output of 3D-ICE thermal
simulation tools. As the tool considers the detailed specification of SoCs, it could constitute to
the more coarse-grained CPU thermal models extending their capabilities, to deliver enhanced
thermal policies considering the full server room.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 31

http://www.recipe-project.eu

Application BarbequeRTRM

Pr
ofi

lin
g

R
un

libta libhwrel

app information

QoS and timing info

QoS and timing info

QoS and timing info

QoS and timing info

QoS and timing info

...

execution times

pWCET distribution

CPU status, temperatures, etc.

Reliability information

alt

[if fault imminent]
Send message to the reliability manager

CPU status, temperatures, etc.

Reliability information

alt

[if performance not satisfactory]
Trigger rescheduling

Figure 12: UML sequence diagram of the BarbequeRTRM accessing the functionalities provided
by the HW reliability and the timing analysis libraries.

5 RTRM Integration
The Barbeque Run-Time Resource Manager (BarbequeRTRM) is a highly modular software
written in C++. The developed interface enables the integration with hardware reliability moni-
tors and timing analysis tools. The developer of such software is required to implement a specific
interface as a C++ library and, in particular, he or she has to implement a pure virtual C++
class. The library code is required to be in C++ and with the modern standard C++11. How-
ever, the developer can easily build a wrapper in any other programming language and expose
the functions using C++ (e.g. the Python language). The reason behind this choice is both to
maintain the compatibility with the current BarbequeRTRM internal structure, to guarantee the
interoperability with several programming languages and to have the maximum possible per-
formance. In fact, C++ is very advantageous if the external tool (reliability monitor or timing
analyzer) has to run computationally intensive algorithms: C++ could guarantee the maximum
performance and scalability. This is especially important when the reliability monitor or the
timing analysis tool are required to carry out the results within a certain timing deadline.

The information exchanged via the built interface and the logical steps of the resource man-
agement decisions are outlined in the sequence diagram of Figure 12. In a initial phase, the
application is profiled gathering information about its timing characteristics. To do this, the

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 32

http://www.recipe-project.eu

Request

+ Request(...)

+ get_resource_type() : resource_type_t

+ get_technology_type() : technology_type_t

+ get_temperatures() : vector<temperature_t>

+ get_previous_state() : previous_reliability_t

+ set_previous_state(...): void

+ push_temperature(...) : void

+ clear_temperatures() : void

Response

+ Response(...)

+ get_fail_probability() : unsigned short

namespace libhwrel

RequestMEM

...

RequestCPU

...

HWReliabilityMonitor

+ perform_analysis(Request) : Response

Figure 13: HW Reliability library: UML class diagram.

BarbequeRTRM acquires the execution times and calls the timing analysis tool. Then, the ap-
plication runs and the timing and reliability information are continuously checked to detect any
anomaly and to trigger the appropriate countermeasures.

5.1 Hardware Reliability library (libhwrel)

The goal of the hardware reliability monitor is to provide the information about the status of the
main hardware components, such as CPU and memory, in order to predict a deterioration of their
reliability. This information can be used to perform reactive and proactive resource management
actions that: (1) reduces the ageing and wear out of the components, and (2) performs recovery
actions in case of failures. The triggered mechanisms are the subject of deliverable D2.2.

The interface to hardware reliability monitor is provided as a C++ library to be implemented
(libhwrel). Its UML class diagram is depicted in Figure 13. The library is encapsulated in a
dedicated namespace, and three main classes are used: (1) the Request class that contains the
request sent by the resource manager to the library, (2) the Response class, that is the reply from
the library to the resource manager, and (3) the main class called HWReliabilityMonitor that
performs the actual analysis taking a Request class as input and providing a Response class
as output. The Request class contains various method to access to the resource type (CPU,
GPU, Memory, etc.) and the technology used (ASIC, FPGA, etc.). Then, the resource manager
registers the temperatures values of the components and the dedicated information like memory
size and CPU usage (thanks to appropriate sub-classes). The output of the library (Response
class) is, instead, just an integer representing the probability of failure in per-mille/program-run.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 33

http://www.recipe-project.eu

Request<T>

+ Request(...)

+ get_all() : vector<T>

+ get_size() :int

+ add_value(T) : void

Response

+ Response(...)

+ get_response_type() : response_type_t

namespace libta

ResponsePWCET

...

ResponseWCET

...

Figure 14: Timing Analisys library: UML class diagram.

5.2 Timing Analysis library (libta)

The timing analysis tool is in charge of performing statistical analyses over the set of measure-
ments of tasks’ execution time. The tool computes the resulting statistical distribution thanks
to suitable statistical algorithms. The BarbequeRTRM provides to the timing analysis tool the
list of timing measurements across a pre-defined timespan. The output of the library is a statis-
tical distribution representing this sample. The usual distribution provided by the library is the
probabilistic-WCET (Worst-Case Execution Time) distribution, i.e. the statistical distribution
of samples at the extremes.

The interface to the timing analsysis tool is provided as a C++ library to be implemented
(libta). Its UML class diagram is depicted in Figure 14. The structure is similar to the libhwrel
library, having the Request, Response, and TimingAnalyzer classes with the same meaning. The
Request class is a template-parameter class, so the execution times can be provided in different
types, e.g. integer or float. This has been done to maintain the flexibility of using the library
with any timing measurement system. Its purpose is to store the vector of execution times to be
analyzed. The Response class is instead a generic class that must be specialized. Currently, we
proposed two possible responses: a statistical pWCET distribution or a fixed WCET value. The
actual choice between them is library dependent, i.e. if it exploits probabilistic or not WCET
estimation methods.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 34

http://www.recipe-project.eu

6 Summary
The proliferation of heterogeneous HPC systems and applications in new domains has led to new
requirements related to non-functional requirements (time, power, reliability, temperature, etc)
and the need for platforms to satisfy them. In this deliverable, we provided a summary of the
progress achieved in the following activities related to different QoS aspects, as part of WP3:

• Reliability methodology. We reported the methodology used. We showed that it is aplicable
to any heterogeneous system and we showed how we can integrate all reliability and degra-
dation measurements into a single system value. We described the predictive mechanism
we will integrate in the run-time manager.

• Timing analysis. Timing predictions are key to make an efficient use of resources while
ensuring that each application is allocated enough resources to complete in time. We
reported the mechanism to provide statistically significant timing predictions. This method
is already encapsulated in a library and ready for integration in the run-time manager.

• Thermal modelling. Thermal modelling techniques to estimate chip temperature are re-
quired in order to enable the assessment of temperature-related reliability effects on chips.
The models developed provide the means to know chip temperature accurately with the
goal of proactively enhancing chip reliability when no hardware support (i.e. temperature
reading) is available.

• Applications characterization. This task has just started (1st of October), so there is noth-
ing relevant to report yet. Details on this topic will be provided in D3.6 in month 30
(October 2020).

• RTRM Reliability, Timing, and Thermal Policies Development. We provide the libraries
defined that will serve as an interface with the models developed (task 3.1 to task 3.3).
This work is at a preliminary stage, since it spans from April 2019 to March 2021. Yet,
the interface has already been defined so we are on track.

This deliverable has described the current status of WP3. Novel contributions on timing, reli-
ability and thermal models have been proposed and submitted for publication. The tasks are
progressing according to the plan and we look forward to the use of the novel approaches for
deriving better run time manager policies.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 35

http://www.recipe-project.eu

References

[1] Jaume Abella. Mbpta-cv. https://doi.org/10.5281/zenodo.1065776, November 2017.

[2] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their trustworthiness.
In SIES, 2015.

[3] J. Abella et al. Measurement-based worst-case execution time estimation using the coeffi-
cient of variation. New York, NY, USA, 2017. ACM.

[4] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and M. Zanella. Man-
aging Heterogeneous Resources in HPC Systems. In Proc. of PARMA-DITAM ’18, pages
7–12. ACM, 2018.

[5] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety for unsafe
languages. In In Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, pages 158–168. ACM Press, 2006.

[6] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-
performance memory allocators. pages 114–124, 2001.

[7] Francisco J. Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez, Jaume Abella,
and Tullio Vardanega. Probabilistic worst-case timing analysis: Taxonomy and comprehen-
sive survey. ACM Comput. Surv., 52(1):14:1–14:35, February 2019.

[8] Barcelona Supercomputing Center. libta: header-only implementation of mbta-cv. https:

//chef.heaplab.deib.polimi.it/source/libta.

[9] S. Coles. An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.

[10] Intel Corp. Intel processor counter monitor, 2019. https://github.com/opcm/pcm/.

[11] Intel Corp. Intel resource director technology, 2019. https://www.intel.com/content/

www/us/en/architecture-and-technology/resource-director-technology.html/.

[12] NVIDIA Corp. Nvidia gpu monitoring tools, 2019. https://github.com/NVIDIA/

gpu-monitoring-tools/.

[13] Intel Corporation. Reliability Report 1H. 2017.

[14] A. K. Coskun, D. Atienza, T. Simunic Rosing, T. Brunschwiler, and B. Michel. Energy-
efficient variable-flow liquid cooling in 3d stacked architectures. In 2010 Design, Automation
Test in Europe Conference Exhibition (DATE 2010), pages 111–116, March 2010.

[15] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C. Gross. Temperature manage-
ment in multiprocessor socs using online learning. In Proceedings of the 45th Annual Design
Automation Conference, DAC ’08, pages 890–893, New York, NY, USA, 2008. ACM.

[16] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster, and F. J. Cazorla.
Dynamic software randomisation: Lessons learnec from an aerospace case study. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, pages 103–108, March
2017.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 36

https://chef.heaplab.deib.polimi.it/source/libta
https://chef.heaplab.deib.polimi.it/source/libta
https://github.com/opcm/pcm/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html/
https://github.com/NVIDIA/gpu-monitoring-tools/
https://github.com/NVIDIA/gpu-monitoring-tools/
http://www.recipe-project.eu

[17] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis for multi-path
programs. In ECRTS, 2012.

[18] Charlie Curtsinger and Emery D. Berger. STABILIZER: Statistically sound performance
evaluation. SIGARCH Comput. Archit. News, 41(1):219–228, March 2013.

[19] J. Del Castillo, J. Daoudi, and R. Lockhart. Methods to distinguish between polynomial
and exponential tails. Scandinavian Journal of Statistics, 41(2):382–393, 2014.

[20] DES. Constant temperature accelerated life testing using the arrhe-
nius relationship, 2013. https://www.desolutions.com/blog/2013/08/

constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/.

[21] P. Ellerman. Calculating reliability using fit & mttf: Arrhenius htol model.

[22] J. Flich, G. Agosta, et al. Exploring manycore architectures for next-generation HPC
systems through the MANGO approach. Microprocessors and Microsystems, 61:154 – 170,
2018.

[23] J. Flich et al. Enabling HPC for QoS-sensitive applications: The MANGO approach. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 702–707,
March 2016.

[24] L. Kosmidis, C. Curtsinger, E. Quiones, J. Abella, E. Berger, and F. J. Cazorla. Probabilistic
timing analysis on conventional cache designs. In 2013 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 603–606, March 2013.

[25] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and F. J. Cazorla. TASA:
Toolchain Agnostic Software Randomisation for Critical Real-Time Systems. In ICCAD,
2016.

[26] Leonidas Kosmidis, Eduardo Quiñones, Jaume Abella, Glenn Farrall, Franck Wartel, and
Francisco J. Cazorla. Containing timing-related certification cost in automotive systems
deploying complex hardware. In Proceedings of the 51st Annual Design Automation Con-
ference, DAC ’14, pages 22:1–22:6, New York, NY, USA, 2014. ACM.

[27] S. Kotz et al. Extreme value distributions: theory and applications. World Scientific, 2000.

[28] Krzysztof Kurowski, Ariel Oleksiak, Wojciech Piatek, Tomasz Piontek, W. Przybyszewski,
Andrzej, and Jan Weglarz. Dcworms - a tool for simulation of energy efficiency in distributed
computing infrastructures. Simulation Modelling Practice and Theory, 39:135–151, 2013.

[29] Clemens J.M. Lasance. Thermally driven reliability issues in microelectronic systems:
status-quo and challenges. Microelectronics Reliability, 43(12):1969 – 1974, 2003.

[30] LoopPerfect. neither. https://github.com/LoopPerfect/neither.

[31] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. A new way about using
statistical analysis of worst-case execution times. SIGBED Review, 8(3), 2011.

[32] Giuseppe Massari, Anna Pupykina, Giovanni Agosta, and William Fornaciari. Predictive
resource management for next-generation high-performance computing heterogeneous plat-
forms. In Proceedings of the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS’19), Jul 2019.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 37

https://www.desolutions.com/blog/2013/08/constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/
https://www.desolutions.com/blog/2013/08/constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/
https://github.com/LoopPerfect/neither
http://www.recipe-project.eu

[33] Enrico Mezzetti and Tullio Vardanega. On the industrial fitness of wcet analysis. 11th
International Workshop on Worst-Case Execution-Time Analysis, 2011.

[34] H. Miyamoto. Semiconductor reliability and quality handbook.

[35] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A systematic
methodology to compute the architectural vulnerability factors for a high-performance mi-
croprocessor. In Proceedings. 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003. MICRO-36., pages 29–40, Dec 2003.

[36] Wojciech Piatek, Ariel Oleksiak, and Georges Da Costa. Energy and thermal models for
simulation and workload and resource management in computing systems. Simulation Mod-
elling Practice and Theory, 58:40–54, 2015.

[37] Wojciech Piatek, Ariel Oleksiak, and Micha vor dem Berge. Modelling impact of power-
and-thermal-aware fans management on data center energy consumption. e-Energy, pages
253–258, 2015.

[38] A. Pupykina and G. Agosta. Optimizing Memory Management in Deeply Heterogeneous
HPC Accelerators. In 2017 46th Int’l Conf on Parallel Processing Workshops (ICPPW),
pages 291–300, Aug 2017.

[39] M. Riera, R. Canal, J. Abella, and A. Gonzalez. A detailed methodology to compute soft
error rates in advanced technologies. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 217–222, March 2016.

[40] L. Santinelli et al. On the sustainability of the extreme value theory for WCET estimation.
In WCET Workshop, 2014.

[41] Arvind Sridhar, Alessandro Vincenzi, David Atienza, and Thomas Brunschwiler. 3d-ice: A
compact thermal model for early-stage design of liquid-cooled ics. IEEE Transactions on
Computers, 63(10):2576–2589, 2014.

[42] Federico Terraneo, Alberto Leva, and William Fornaciari. An open-hardware platform for
mpsoc thermal modeling. In International Conference on Embedded Computer Systems.
Springer, 2019.

[43] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino, G. Politano, A. Bosio,
G. Di Natale, D. Gizopoulos, and S. Di Carlo. Cross-layer reliability evaluation, moving from
the hardware architecture to the system level. Microprocess. Microsyst., 39(8):1204–1214,
November 2015.

[44] P Vassiliou and A. Mettas. Understanding accelerated life-testing analysis. In 2002 Annual
Reliability and Maintainability Symposium., Dec 2002.

[45] R. Wilhelm et al. The worst-case execution time problem: overview of methods and survey
of tools. ACM TECS, 7(3):1–53, 2008.

[46] Yun Xiang, Thidapat Chantem, Robert P. Dick, X. Sharon Hu, and Li Shang. System-level
reliability modeling for mpsocs. In Proceedings of the Eighth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS
’10, pages 297–306, New York, NY, USA, 2010. ACM.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 38

http://www.recipe-project.eu

[47] Xilinx. Device Reliability Report, First Quarter 2019. 2019.

http://www.recipe-project.eu D3.2 Report on Predictive Reliability Techniques — 39

http://www.recipe-project.eu

	Introduction
	Reliability Methodology
	General approach
	OS-based models

	CPU reliability estimation
	Intel support for occupancy and usage estimation
	Raw FIT estimates

	GPU reliability estimation
	NVIDIA support for occupancy and usage estimation
	Raw FIT estimates

	Reliability estimates in FPGA devices
	Raw FIT estimates
	Temperature measurements
	Computing Resources Utilization

	Timing Analysis
	Execution Time Test Coverage Improvement for HPC
	Memory-Placement Software Randomization
	Code Randomization
	Stack Randomization
	Heap Randomization
	Summary

	Measurement-Based Probabilistic Timing Analysis for HPC
	MBPTA-CV Fundamentals
	MBPTA-CV Steps
	Independence and Identical Distribution

	Minimizing Network Interference
	Summary

	Related Work
	libta: A C++ library for MBPTA-CV Analisys
	The API
	libta Flow

	Conclusions and Next Steps

	Thermal Modelling
	System-on-Chip modelling
	Server/farm modelling

	RTRM Integration
	Hardware Reliability library (libhwrel)
	Timing Analysis library (libta)

	Summary

