
REliable Power and time-ConstraInts-aware Predictive management of heterogeneous
Exascale systems

WP3 Predictive Reliability and QoS Enforcing
Methodologies

D3.3 RECIPE Fault Prediction Tools

http://www.recipe-project.eu

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No

801137

http://www.recipe-project.eu

Grant Agreement No.: 801137
Deliverable: D3.3 RECIPE Fault Prediction Tools

Project Start Date: 01/05/2018 Duration: 36 months
Coordinator: Politecnico di Milano, Italy

Deliverable No: D3.3
WP No: 3
WP Leader: R. Canal
Due date: 30/04/2020
Delivery date: 07/05/2020

Dissemination Level:

PU Public Use X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Ser-

vices)
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 2

http://www.recipe-project.eu

DOCUMENT SUMMARY INFORMATION

Project title: REliable Power and time-ConstraInts-aware Predictive
management of heterogeneous Exascale systems

Short project name: RECIPE
Project No: 801137
Call Identifier: H2020-FETHPC-2017
Thematic Priority: Future and Emerging Technologies
Type of Action: Research and Innovation Action
Start date of the
project:

01/05/2018

Duration of the
project:

36 months

Project website: http://www.recipe-project.eu

D3.3 RECIPE Fault Prediction Tools

Work Package: WP3 Predictive Reliability and QoS Enforcing Methodologies
Deliverable number: D3.3
Deliverable title: RECIPE Fault Prediction Tools
Due date: 30/04/2020
Actual submission
date:

07/05/2020

Editor: R. Canal
Authors: F. Mazzocchetti, R. Canal, M. Fusi, L. Kosmidis, F.J. Cazorla, J.

Abella, C. Hernandez, R. Tornero, J. Flich, Giuseppe Massari, Fed-
erico Reghenzani

Dissemination Level: PU
No. pages: 15
Authorized (date): 07/05/2020
Responsible person: W. Fornaciari
Status: Submitted

Revision history:

Version Date Author Comment
v.0.1 13/04/2020 Outline and contributions identified
v.1.0 27/04/2020 Final version after internal review

Quality Control:

Who Date
Checked by internal reviewer J. Abella 27/04/2020
Checked by WP Leader R. Canal 27/04/2020
Checked by Project Technical
Manager

G. Agosta 07/05/2020

Checked by Project Coordinator W. Fornaciari 07/05/2020

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 3

http://www.recipe-project.eu
http://www.recipe-project.eu

COPYRIGHT

©Copyright by the RECIPE consortium, 2018-2020.

This document contains material, which is the copyright of RECIPE consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 801137 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

RECIPE is a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 801137. Please see http://www.recipe-
project.eu for more information.

The partners in the project are Universitat Politècnica de València (UPV), Centro Regionale
Information Communication Technology scrl (CeRICT), École Polytechnique Fédèrale de Lau-
sanne (EPFL), Barcelona Supercomputing Center (BSC), Poznan Supercomputing and Net-
working Center (PSNC), IBT Solutions S.r.l. (IBTS), Centre Hospitalier Universitaire Vaudois
(CHUV). The content of this document is the result of extensive discussions within the RECIPE
©Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The infor-
mation contained in this document is provided by the copyright holders ”as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the RECIPE
collaboration, including the copyright holders, or the European Commission be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of the information
contained in this document, even if advised of the possibility of such damage.

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 4

http://www.recipe-project.eu
http://www.recipe-project.eu
http://www.recipe-project.eu

Contents

1 Introduction 6

2 Summary of the Reliability Methodology 7

3 Reliability Tool 9
3.1 CPU and memory monitoring . 9

3.1.1 Structure of the Hardware Reliability Tool 9
3.1.2 How to use the library . 10

3.2 Library for FPGA monitoring . 11
3.2.1 How to use the library . 12

3.3 GPU monitoring and the Local Resource Manager 12

4 Summary 14

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 5

http://www.recipe-project.eu

1 Introduction
High-Performance Computing (HPC) systems have become ubiquitous and are no longer concen-
trated in supercomputing facilities and data centers. While these facilities still exist and grow, a
plethora of HPC systems building on large multicores and accelerators (e.g. GPUs, FPGA-based)
are nowadays deployed for a variety of applications of interest, not only for large enterprises and
public institutions, but also for small and medium enterprises as well as small public and private
bodies.

The proliferation of HPC systems and applications in new domains has led to new require-
ments related to non-functional requirements (time, power, reliability, temperature, etc) and the
implementation of platforms to satisfy them [1, 5, 4, 7, 10]. In this deliverable, we provide a de-
scription of the reliability tool (fault prediction tool) developed in this project.This prediction of
the aging of the different hardware components of the platform will -later on- guide application
deployment and resource management, leveraging aspects related to the lifetime of the platform
as a whole. The aging monitoring and prediction is based on two main input parameters:

• Aggregate block usage: from functional units and memories to chip level and system level
aggregates.

• Connection to the thermal tools (T3.3 and D3.5) for more accurate prediction (as temper-
ature has a key influence in degradation).

The rest of the deliverable provides details on the usage and capabilities of the software devel-
oped. The specific underlying techniques implemented are described in the previous deliverable
D3.2.

The tool developed is available at: RECIPE’s GIT repository and they are being integrated in
the run-time manager (Task 3.5)

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 6

http://www.recipe-project.eu

2 Summary of the Reliability Methodology
Reliability at the system level needs to take into consideration the different -heterogeneous-
blocks that build it. In RECIPE, this means a system composed of a multicore CPU and several
accelerators (GPU and FPGA). Overall, the system should provide information (on the reliability
status of each block). For some blocks where the hardware provides more information, the
system can leverage more detailed information (e.g. for the CPU, we may distinguish between
the memory hierarchy and the processor core).

System reliability measurements will be done through the computation of the FIT rate (number
of failures in 109 hours of operation). System reliability may be computed as an aggregate of
multiple blocks (e.g. CPUs, caches, memories, accelerators . . .). Individual –independent- FIT
rates can be combined to a system by:

FIT =
number of failures

top

FITsystem =
N∑
i=1

(FITi)

Similarly, the FIT rate depends on the fundamental vulnerability of the block (also known as
raw FIT rate). From the raw FIT rate, there are several derrating factors in the system [11].
This effectively means that any fault in the circuitry, may not be visible to the architectural
state (i.e. on-chip code and values of the application being run). To take this into account, we
will use the Architecture Vulnerability Factor -AVF- which measures block occupancy. In short,
if there is a fault in a block we are not using (i.e. it does not hold the architectural state), then
it will not affect the system (i.e. it will be masked). AVF can be factored in in the FIT rate
computation as follows:

FITsystem =
N∑
i=1

(AV Fblocki ∗ FITi)

Finally, electronic circuits degrade over time. Among other causes, temperature is a key contrib-
utor. As degradation increases the FIT rate of components, we will factor it in as an acceleration
factor (Af) of the “operation” time (HMOL model [3]). Thus:

top + d = top ∗ Af

and Af is defined as:
Af = e

Ea
k

∗(1
Tuse

− 1
Tstress

)

where:

Ea is the activation energy (eV) of the failure mode (Ea = 0.7eV for transistors)

k is the Boltzmann’s Constant (k = 8.617x10−5eV/K)

Tuse is use temperature (standardized at 55°C or 328°K)

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 7

http://www.recipe-project.eu

Tstress is the stress temperature (higher than Tuse means stress, lower means recovery) (in ºK)

This model has been shown to adapt to different sources of acceleration (NBTI, HCI, TDDB,
electromigration) [2, 8, 9, 12]. If so, individual FIT rates for each source should be computed
and then aggregated. This is a powerful model that will let us incorporate different sources of
degradation into our system-wide model.

Implementation details can be found in deliverable D3.2. In this report, we describe the software
delivered.

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 8

http://www.recipe-project.eu

Figure 1: Reliability tool breakdown into components

3 Reliability Tool
The main goal of the tool is to provide a Failure in Rate (FIT) estimation of the different system
blocks (i.e. CPU, memory and accelerators) under the execution of a program in the system.
The FIT rate will be computed as determined in the previous section. To archive this goal, we
monitor the activity of the system is monitored during the program execution. This is performed
using the monitoring capabilities of the hardware devices as descrived in D3.2.

3.1 CPU and memory monitoring

Accessing the monitoring capabilities requires certain privileges for the access to the specific
information. Similarly, certain conditions need to be enforced so that the readings are significant.

• Sudo privileges. They are necessary because the code can access to PMC using specific x86
instructions, which are under sudo privileges domain.

• On the target machine all cores need to be a fixed frequency. This trick is necessary for
avoid cycles different in term of times. For example, 1 cycles in core A is 10ns, in B core
is 20ns. For simplicity you can set the governor to performance in all cores under Linux
domain. There are other ways to do it.

• No interference in the machine.

For the prediction part, there is no specific requirement. As long as the data supplied is signifi-
cant, the prediction performed will be accurate -within the model’s capabilities.

3.1.1 Structure of the Hardware Reliability Tool

The monitoring tool (integrated in a single library) is composed by two libraries . One of them
is the Intel PCM library which is used to handle the access to PMC and retrieve CPU and
memory topology information (libPCM) . The second library (libHW) is used to handle the
data, perform the modeling computation and provide the results and provide an easy interface
to use. Finally, we have a third library (FIT) that provides the accounting of the failure rate (in
FIT units). This is separated from the hardware interface (libPCM) and the model computation

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 9

http://www.recipe-project.eu

(libHW) so that the software can instantiate it anywhere, without needing to instantiate the
specific modelling and/or hardware interface.

The structure of the library is depicted in Figure 1. The concept of Snap is an important concept
if the user wants to modify something. In this library, a Snap is photography of the object. For
example, if we have 10 cpuSnap object, it means we have 10 shot photography of the CPU state.
This because the ‘int loop’ of the entry function is set to 10.

File Name Description
fit.cpp FIT class
hw_mon.cpp/h Main part of the library. It is like the main of the library
coreSnap.cpp/h Information of each core
cpuSnap.cpp/h Information of the CPU, include information about sockets, cores,

topology. Activity
memorySnap.cpp/h Information of the Memory, abstract layer of all memory. Activity
activityCpu.cpp/h Activity for CPU
activityMemory.cpp/h Activity for Memory
skylakeX.h Parameter of skylake architecture.

3.1.2 How to use the library

In the caller code (e.g. the runtime manager), we have to first include the headers of the libraries.
For instance, if they are located in the “lib/libHW” folder:

#include "lib/libHW/hw_mon.h"

#include "lib/libHW/fit.h"

The first header contains the only function to use under the caller perspective. It is detailed
below. The second header is for reading and writing the current and computed FIT values. The
FIT object offers Getter functions to retrieve the FIT results. If the system has several socket
and/or many memory nodes it will report an average for the whole system. For example, if my
system has 4 sockets, the FIT CPU will be an average of these 4 CPU sockets. At the start of the
system, the user (or system administrator) needs to insert the manufacturers’ FIT values (or an
estimation of those). The tool allows the user to define every CPU block FIT value (e.g. ALU,
caches, etc.), Everytime the reliability model is called, these FIT values are updated accordingly.

Then, we have to compile the caller program adding the library. If the cpp file is called “exam-
ple.cpp” just type in the command line (The libPCM uses the pthread library, for that reason
we need to add this library at compile time):

g++ example.cpp -L./lib -lHW_MON -lpthread -o example

The entry point of the library is a function. The definition is in the HW_MON header and it is as
follows:

void entry(char * program[], fit &fit, int t_use_standardized,

int loop, int fix_temp);

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 10

http://www.recipe-project.eu

Where,

Parameter Name Description
char * program[] It is the program which you want to execute under the system

monitoring. You need pass the entirely path of the program and its
parameter. The last parameter need to be a NULL

fit &fit Object which holds fit input parameter and offer fit results values.
int t use standardized It is the temperature for the Acceleration Factor calculation.
int loop Default value to set is 1. If you want calculate the fit using an

average of sub data just put the iteration number here. The program
will make ‘loop’ iteration and will calculate the fit values with these
averages.

3.2 Library for FPGA monitoring

The access to FPGA and GPU heterogeneous resources in the RECIPE prototype is provided
by the HN Library and HN Daemon. These two components expose a pletora of features for
user applications to work with these type of resources, independently of their physical location
in the final system. With regards to the activities of WP3, the most important functionalities
exposed to upper software layers consist of enabling the reading of temperature and occupation
counters of the heterogeneous resources.

In RECIPE, we have adopted OpenCL language for programming GPUs and FPGAs. Thus,
the HN library implements the most common functions of the OpenCL specification. One of
these function is clGetDeviceInfo. We have extended the behavior of this function for getting
temperature reads and kernel occupation information for FPGA devices. The prototype of the
function, got from Khronos OpenCL specification[6], is as follows:

cl_int clGetDeviceInfo(cl_device_id device, cl_device_info param_name,

size_t param_value_size, void *param_value, size_t *param_value_size_ret)

The parameters of this function are summarized next.

Parameter Name Description
cl device id device OpenCL resource returned by clGetDeviceIDs.
cl device info param name An enumeration that identifies the device information being

queried. It can be one of the values as specified in the table
below for reading temperature or occupation.

size t param value size Specifies the size in bytes of memory pointed to by
param value. This size in bytes must be greater than or equal
to size of return type specified in the table below.

void *param value A pointer to memory location where appropriate values for
a given param name as specified in the table below will be
returned. If param value is NULL, it is ignored.

size t *param value size t Returns the actual size in bytes of data being queried by
param value. If param value size ret is NULL, it is ignored .

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 11

http://www.recipe-project.eu

Apart from the enumeration values described in the Khronos OpenCL specification for the
cl device info data type, we have provided two extension for letting applications to read tem-
perature and occupation information for FPGA resources, as next table specifies.

cl device info Description
CL DEVICE CORE TEMPERATURE RECIPE Return type: cl int. Temperature

value.
CL DEVICE CORE OCCUPATION RECIPE Return type: cl int. Metric of the

device occupation for the reliability
model.

3.2.1 How to use the library

We rely on OpenCL programming model for both host and kernel applications. Thus, the header
files that should be included by the host part source code of an application are as follows:

#include <CL/opencl.h>

#include <CL/cl_ext_upv.h>

Let’s assume that the HN library and headers files has been installed to “./lib/libHW”. Then, the
application should be compiled and linked basically in the same way as compiling an application
for using a standard OpenCL library.

g++ example.cpp -I./lib/libHW -L./lib -lHW_MON -lOpenCL -lpthread -o example

Once the application has been compiled and previously to its execution, the user should add the
location of the OpenCL library wrapper that comes with HN Library to the LD_LIBRARY_PATH

environment variable, when it is not installed in the default system location.

3.3 GPU monitoring and the Local Resource Manager

For the monitoring of the GPUs instead, vendors like NVIDIA and AMD already provide suitable
run-time libraries (NVIDIA Management Library and AMD Display Library). These libraries,
allow us to observe the current load (activity) of the processing units, their temperature, and
dynamically change the clock frequency, whenever requested by the run-time management policy.

These libraries sit next to the FPGA and CPU monitoring library, previously described, as shown
in Figure 1. Together, they provide the status of the different hardware pieces to the run-time
manager. The run-time manager, subsequently, can trigger the reliability prediction library for
accurate estimate computation not only for each piece, but for the whole heterogeneous system
as a whole.

The integration of these low-level HW libraries into a single component of the RECIPE software
stack, allows the local resource manage to represent a unified abstraction layer, on top of a
deeply heterogeneous node. Moreover, since the BarbequeRTRM performs the monitoring of the
hardware status, it is the sole data provider for the reliability prediction library.

As already explained in other deliverables, the BarbequeRTRM will benefit from the integration
with the Reliability tools, since the data collected will be used to provide better reliability status

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 12

http://www.recipe-project.eu

of the underlying system; as well as, it enables the implementation of reliability-aware resource
management policies.

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 13

http://www.recipe-project.eu

4 Summary
The proliferation of heterogeneous HPC systems and applications in new domains has led to new
requirements related to non-functional requirements (time, power, reliability, temperature, etc)
and the need for platforms to satisfy them. In this deliverable, we provided a summary of the
progress achieved in the following activities related to different QoS aspects, as part of WP3:

• Reliability tool. We reported the tool created. We showed that it is aplicable to any het-
erogeneous system and we showed how we can integrate all reliability and degradation
measurements into a single system value. We described the predictive mechanism we will
integrate in the run-time manager.

This deliverable has described the fault prediction tool developed as part of WP3. The tasks
has progressed according to the plan and we look forward to the use of the novel approaches for
deriving better run time manager policies in the remaining tasks of the WP.

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 14

http://www.recipe-project.eu

References

[1] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and M. Zanella. Man-
aging Heterogeneous Resources in HPC Systems. In Proc. of PARMA-DITAM ’18, pages
7–12. ACM, 2018.

[2] DES. Constant temperature accelerated life testing using the arrhe-
nius relationship, 2013. https://www.desolutions.com/blog/2013/08/

constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/.

[3] P. Ellerman. Calculating reliability using fit & mttf: Arrhenius htol model.

[4] J. Flich, G. Agosta, et al. Exploring manycore architectures for next-generation HPC
systems through the MANGO approach. Microprocessors and Microsystems, 61:154 – 170,
2018.

[5] J. Flich et al. Enabling HPC for QoS-sensitive applications: The MANGO approach. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 702–707,
March 2016.

[6] Khronos Group Inc. OpenCL specification. https://www.khronos.org/opencl/.

[7] Giuseppe Massari, Anna Pupykina, Giovanni Agosta, and William Fornaciari. Predictive
resource management for next-generation high-performance computing heterogeneous plat-
forms. In Proceedings of the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS’19), Jul 2019.

[8] H. Miyamoto. Semiconductor reliability and quality handbook.

[9] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A systematic
methodology to compute the architectural vulnerability factors for a high-performance mi-
croprocessor. In Proceedings. 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003. MICRO-36., pages 29–40, Dec 2003.

[10] A. Pupykina and G. Agosta. Optimizing Memory Management in Deeply Heterogeneous
HPC Accelerators. In 2017 46th Int’l Conf on Parallel Processing Workshops (ICPPW),
pages 291–300, Aug 2017.

[11] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino, G. Politano, A. Bosio,
G. Di Natale, D. Gizopoulos, and S. Di Carlo. Cross-layer reliability evaluation, moving from
the hardware architecture to the system level. Microprocess. Microsyst., 39(8):1204–1214,
November 2015.

[12] P Vassiliou and A. Mettas. Understanding accelerated life-testing analysis. In 2002 Annual
Reliability and Maintainability Symposium., Dec 2002.

http://www.recipe-project.eu D3.3 RECIPE Fault Prediction Tools — 15

https://www.desolutions.com/blog/2013/08/constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/
https://www.desolutions.com/blog/2013/08/constant-temperature-accelerated-life-testing-using-the-arrhenius-relationship/
https://www.khronos.org/opencl/
http://www.recipe-project.eu

	Introduction
	Summary of the Reliability Methodology
	Reliability Tool
	CPU and memory monitoring
	Structure of the Hardware Reliability Tool
	How to use the library

	Library for FPGA monitoring
	How to use the library

	GPU monitoring and the Local Resource Manager

	Summary

