
REliable Power and time-ConstraInts-aware Predictive management of heterogeneous
Exascale systems

WP3 Predictive Reliability and QoS Enforcing
Methodologies

D3.4 RECIPE Timing Analysis Tools

http://www.recipe-project.eu

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No

801137

http://www.recipe-project.eu

Grant Agreement No.: 801137
Deliverable: D3.4 RECIPE Timing Analysis Tools

Project Start Date: 01/05/2018 Duration: 36 months
Coordinator: Politecnico di Milano, Italy

Deliverable No: D3.4
WP No: 3
WP Leader: R. Canal
Due date: 30/04/2020
Delivery date: 07/05/2020

Dissemination Level:

PU Public Use X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Ser-

vices)
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 2

http://www.recipe-project.eu

DOCUMENT SUMMARY INFORMATION

Project title: REliable Power and time-ConstraInts-aware Predictive
management of heterogeneous Exascale systems

Short project name: RECIPE
Project No: 801137
Call Identifier: H2020-FETHPC-2017
Thematic Priority: Future and Emerging Technologies
Type of Action: Research and Innovation Action
Start date of the
project:

01/05/2018

Duration of the
project:

36 months

Project website: http://www.recipe-project.eu

D3.4 RECIPE Timing Analysis Tools

Work Package: WP3 Predictive Reliability and QoS Enforcing Methodologies
Deliverable number: D3.4
Deliverable title: RECIPE Timing Analysis Tools
Due date: 30/04/2020
Actual submission
date:

07/05/2020

Editor: R. Canal
Authors: R. Canal, M. Fusi, F. Mazzocchetti, L. Kosmidis, F.J. Cazorla, J.

Abella, C. Hernandez, R. Tornero, J. Flich
Dissemination Level: PU
No. pages: 14
Authorized (date): 07/05/2020
Responsible person: W. Fornaciari
Status: Draft

Revision history:

Version Date Author Comment
v.0.1 13/04/2020 Outline and contributions identified
v.1.0 27/04/2020 Final version after internal review

Quality Control:

Who Date
Checked by internal reviewer J. Abella 27/04/2020
Checked by WP Leader R. Canal 27/04/2020
Checked by Project Technical
Manager

G. Agosta 07/05/2020

Checked by Project Coordinator W. Fornaciari 07/05/2020

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 3

http://www.recipe-project.eu
http://www.recipe-project.eu

COPYRIGHT

©Copyright by the RECIPE consortium, 2018-2020.

This document contains material, which is the copyright of RECIPE consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 801137 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

RECIPE is a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 801137. Please see http://www.recipe-
project.eu for more information.

The partners in the project are Universitat Politècnica de València (UPV), Centro Regionale
Information Communication Technology scrl (CeRICT), École Polytechnique Fédèrale de Lau-
sanne (EPFL), Barcelona Supercomputing Center (BSC), Poznan Supercomputing and Net-
working Center (PSNC), IBT Solutions S.r.l. (IBTS), Centre Hospitalier Universitaire Vaudois
(CHUV). The content of this document is the result of extensive discussions within the RECIPE
©Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The infor-
mation contained in this document is provided by the copyright holders ”as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the RECIPE
collaboration, including the copyright holders, or the European Commission be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of the information
contained in this document, even if advised of the possibility of such damage.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 4

http://www.recipe-project.eu
http://www.recipe-project.eu
http://www.recipe-project.eu

Contents

1 Introduction 6

2 Summary of the Timing Analysis Methodology 7

3 Timing Analysis Tool 9
3.1 libta: The API . 9
3.2 libta: Call Flow . 11

4 Summary 13

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 5

http://www.recipe-project.eu

1 Introduction
High-Performance Computing (HPC) systems have become ubiquitous and are no longer concen-
trated in supercomputing facilities and data centers. While these facilities still exist and grow, a
plethora of HPC systems building on large multicores and accelerators (e.g. GPUs, FPGA-based)
are nowadays deployed for a variety of applications of interest, not only for large enterprises and
public institutions, but also for small and medium enterprises as well as small public and private
bodies.

The proliferation of HPC systems and applications in new domains has led to new requirements
related to non-functional requirements (time, power, reliability, temperature, etc) and the im-
plementation of platforms to satisfy them [2, 8, 7, 12, 13]. In this deliverable, we provide a
description of the timing analysis tools developed in this project.This prediction of the (proba-
bilistic) worst-case execution time will -later on- guide resource management, leveraging aspects
related to the efficient use of the computing platform as a whole.

The rest of the deliverable provides details on the usage and capabilities of the software devel-
oped. The specific underlying techniques implemented are described in the previous deliverable
D3.2.

The tools developed are available at: RECIPE’s GIT repository and they are being integrated
in the run-time manager (Task 3.5)

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 6

http://www.recipe-project.eu

2 Summary of the Timing Analysis Methodology
Timeliness is a key non-functional requirement. Timeliness can be expressed in the form of
strict real-time guarantees or quality-of-service (QoS), and is quite common in HPC applications
related to big data in general and sustained input processing in particular. For instance, the result
of a weather prediction or large simulation modeling the propagation of hazardous substances
after an accident, needs to be completed in a given short time frame in order to be useful.

Predicting how much an application can take to run requires the use of representative execution
time tests during the analysis phase. However, a number of execution time conditions are hard
– if at all possible – to control or even to track, so that it turns out to be virtually impossible to
relate execution time measurements in the analysis phase with those that may occur once the
system has been deployed.

Difficulties arise from the way the Operating System (OS) places code, stack and heap data in
memory, and the impact that such allocation has on cache behavior, contention in the access to
shared hardware resources (e.g. the memory controller, or shared cache buses and buffers), among
other effects. Therefore, performing an arbitrarily large number of experiments during analysis
does not guarantee, in general, covering execution time conditions relevant during operation since
those analysis conditions may preclude, by construction, some specific memory allocations that
may lead to high execution times. Hence, the lack of controllability of those effects, which are
managed in non-obvious ways by the OS, defeat any attempt to predict execution times based
on test campaigns that lack means to trigger specific timing conditions. In order to address
this challenge, (memory placement) software randomization (SWrand) has been proposed with
the aim of enabling probabilistic coverage of the different execution time conditions [6, 10].
Those techniques randomize the physical location of code and data in memory, which indirectly
randomizes their placement in cache and hence, their hit/miss behavior.

• Code Randomization: SWrand copies functions’ code at random memory locations during
execution with the objective of randomizing their cache placement and hence, how code
conflicts in first level (L1) instruction caches with OS code, dynamic libraries and other
applications, and additionally with data in caches shared amongst code and data.

• Stack Randomization: Dynamic stack randomization builds upon placing the function stack
at a random location for each function. This can be done using indirections and allocating
the stack from the heap, as in the case of code [10]. In particular, the solution builds upon
having a pool of preallocated stack frames that are given to the functions called on demand.
However, in the context of HPC applications, which may run multiple threads simultane-
ously, managing a pool of stack frames imposes the use of synchronization primitives and
may decrease performance.

• Heap Randomization: SWrand, by default, does not consider heap randomization per se
since, critical real-time embedded systems are not allowed to allocate memory dynamically.
Hence, specific randomization for heap objects is not needed as a goal. However, SWrand
builds upon random heap object allocation provided by Stabilizer [6], a compiler pass
developed within the LLVM compiler and a runtime system based on Die-Hard[3] and
Heap-Layers[4] providing random allocation of objects.

Overall, SWrand can be used for HPC applications, even if they are multi-threaded. However,

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 7

http://www.recipe-project.eu

specific considerations need to be taken into account for code and stack randomization, as
detailed above. Once those considerations are taken into account, SWrand provides means to
test any cache placement probabilistically, which calls for appropriate probabilistic means to
analyze execution times obtained with SWrand-based test campaigns. Once the test campaign
is in place, we needed to analyze the randomly sample execution time measurements, making
considerations for its reliable use in the context of HPC applications. This has been described
in D3.2 as the MBPTA-CV. The use of MBPTA-CV in the context of HPC applications is
viable as long as particular considerations are taken into account. Those considerations relate
to choosing appropriate sample sizes, with less demanding criteria than for critical real-time
embedded systems, and appropriate measurement collection protocols to achieve i.i.d. at least
for maxima. Constraints for exponentiality compliance can also be decreased, and acceptable
exceedance probabilities may be, in general, higher than those for critical real-time embedded
systems.

Overall, following the flow summarized here and detailed in D3.2, we can compute probabilistic
worst-case execution time values in an HPC context.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 8

http://www.recipe-project.eu

3 Timing Analysis Tool
The timing analysis tool is in charge of performing statistical analyses over the set of measure-
ments of tasks’ execution time. The tool computes the resulting statistical distribution thanks
to suitable statistical algorithms. The BarbequeRTRM provides to the timing analysis tool the
list of timing measurements across a pre-defined timespan. The output of the library is a statis-
tical distribution representing this sample. The usual distribution provided by the library is the
probabilistic-WCET (Worst-Case Execution Time) distribution, i.e. the statistical distribution
of samples at the extremes.

The interface to the timing analsysis tool is provided as a C++ library (libta). Its UML class
diagram is depicted in Figure 1. It has the Request, Response, and TimingAnalyzer classes
with the same meaning. The Request class is a template-parameter class, so the execution times
can be provided in different types, e.g. integer or float. This has been done to maintain the
flexibility of using the library with any timing measurement system. Its purpose is to store the
vector of execution times to be analyzed. The Response class is instead a generic class that must
be specialized. Currently, we proposed two possible responses: a statistical pWCET distribution
or a fixed WCET value. The actual choice between them is library dependent, i.e. if it exploits
probabilistic or not WCET estimation methods.

Request<T>

+ Request(...)

+ get_all() : vector<T>

+ get_size() :int

+ add_value(T) : void

Response

+ Response(...)

+ get_response_type() : response_type_t

namespace libta

ResponsePWCET

...

ResponseWCET

...

Figure 1: Timing Analisys library: UML class diagram.

3.1 libta: The API

libta [5] implements the technique of MBPTA-CV [1] in a header-only library. The library is
template-based, so it is possible to support generic data structures. Error handling is performed

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 9

http://www.recipe-project.eu

Response

ResponseInvalid

ResponseInvalidData ResponseInvalidDistribution

ResponsePWCET<T>

Figure 2: Inheritance diagram of Response.
–

through the Either class taken from the neither library [11], which offers a modern way of
handling errors without the need of using return codes nor exceptions.

The API is contained with the libta namespace. In this section, such a namespace is not
specified before class and method names for the sake of conciseness of the showed headers. The
reccomendation is to use float and double datatypes to process data. Using long double may
slow down the computation significantly.

The Request class represents the input for the library. It wraps a std::vector, but it may be
easily changed if needed. These are the public methods:

Request<T>(): Empty class constructor.

std::vector<T>::iterator begin(): Begin iterator for for-range-loops.

std::vector<T>::const iterator cbegin() const: Const begin iterator for for-range-loops.

std::vector<T>::iterator end(): End iterator for for-range-loops.

std::vector<T>::const iterator cend(): Const end iterator for for-range-loops.

void add value(const T &time): Add new values to the timing array.

const std::vector<T> & get all() const: Getter for the whole timing array.

int get size(): Get the number of added values.

The Response class is a generic interface of the responses produced by the libta API. Most of
the times it used to report errors, except for the ResponsePWCET<T> sub-class, which reports a
valid timing estimate given an input probability. Figure 2 shows the inheritance diagram related
to the Response class and the following list breafly describes the meaning of each Response:

Response: A generic response.

ResponseInvalid:A generic response with a string message.

ResponseInvalidData: This is returned when the a request cannot be used to estimate a
distribution.

ResponseInvalidDistribution: This response is returned when it is not possible to produce
a pWCET with a given distribution.

ResponePWCET<T>: A response obtained by succesfully getting a pWCET estimate.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 10

http://www.recipe-project.eu

The class EVTDistribution<T> represents an estimate of a heavy-tail distribution obtained
by processing a Request<T>. A user should produce an EVTDistribution<T> instance using
the DistributionAnalyzer class. This class offer the following public methods (note that the
data type EitherPWCETResponse<T> is an alias for Either< ResponseInvalidDistribution,

ResponsePWCET<T> >):

EitherPWCETResponse<T> getPWCET (T probability) const: Get the execution time that
exceeds with the given probability.

EitherPWCETResponse<T> getPWCETLow (T probability) const:Get the execution time that
exceeds with the given probability with risky assumption.

EitherPWCETResponse<T> getPWCETHigh (T probability) const:Get the execution time
that exceeds with the given probability with safe assumption.

T getMaxExecutionTime () const: Get the collected maximum execution from the real val-
ues.

const std::vector< T > getTailValues() const: Get the real values used for the tail
estimation.

DistributionAnalyzer is responsible of the production a heavy tail estimate through the
estimate distribution method, which requires a shared pointer that references a Request

and a const int rank length that tells how many points the output distribution should
have. Setting a higher value of rank length increases the accuracy of the result, but it slows
downs the production of the curve. Such a method returns a Either< ResponseInvalidData,

EVTDistribution<T> > instance.

3.2 libta: Call Flow

The standard usage of libta is shown in the Flow-Chart present in Figure 3.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 11

http://www.recipe-project.eu

(1) Fill Request req

is ResponseInvalidData

(2)
dist= DistributionAnalyzer().estimate_distribution(req,

10000)

is EVTDistribution<T>

(3)
check type

of dist

(4) estimate = dist.getPWCET(p)

is ResponseInvalidDistribution

is ResponsePWCET<T>

5)
check type of

estimate

(6) print(estimate)

Figure 3: Flow-chart of the usage of libta to collect the minimum execution time that can be
observed with a given probability p.

–

At first, a new instance of Request must be created and filled with samples the represents the exe-
cution time of a target (step 1 in the previously mentioned Figure), then the estimate distribution

method of the DistributionAnalyzer class produces an estimate of a heavy tail distribution
in a EVTDistribution instance if it is possible to apply the MBPTA-CV on the given input,
otherwise it returns a ResponseInvalidData (steps 2 and 3). This may happen if one of the
number of CV values valid for estimating the heavy tail is smaller or equal than 10. If a valid
distribution is returned, now it is possible to ask to the distribution the minimum execution
time that can be observed with input probability p by calling the getPWCET method (step 4).
If it’s possible to compute such a value, then a ResponsePWCET instance is returned, other-
wise a ResponseInvalidDistribution is what the programmer will get (step 5). Note that
ResponseInvalidDistribution is not used in the API yet, but this may change in the future.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 12

http://www.recipe-project.eu

4 Summary
The availability of HPC platforms nowadays has led to a plethora of HPC applications in a
variety of domains and contexts. Such ubiquity of HPC has made a number of new requirements
emerge. Out of those, timing guarantees are particularly important for a number of applications
with real-time needs.

This work shows how software randomization and MBPTA analysis can be used reliably to
perform extensive and representative execution time test campaigns for HPC applications and
predicting high execution times. Our results on a parallel application used for geophysical ex-
ploration confirm our claims and show how reliable and tight pWCET bounds can be obtained
for HPC applications running on HPC systems.

This deliverable has described the timing analysis tool. The novel contributions on timing anal-
ysis in HPC has been submitted (and accepted) for publication [9].This tool will be integrated
in the run-time manager in the remaining tasks of this WP. We look forward to the use of this
novel approaches for deriving better run time manager policies.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 13

http://www.recipe-project.eu

References

[1] Jaume Abella, Maria Padilla, Joan Del Castillo, and Francisco J. Cazorla. Measurement-
based worst-case execution time estimation using the coefficient of variation. ACM Trans.
Des. Autom. Electron. Syst., 22(4), June 2017.

[2] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and M. Zanella. Man-
aging Heterogeneous Resources in HPC Systems. In Proc. of PARMA-DITAM ’18, pages
7–12. ACM, 2018.

[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety for unsafe
languages. In In Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, pages 158–168. ACM Press, 2006.

[4] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-
performance memory allocators. pages 114–124, 2001.

[5] Barcelona Supercomputing Center. libta: header-only implementation of mbta-cv. https:

//chef.heaplab.deib.polimi.it/source/libta.

[6] Charlie Curtsinger and Emery D. Berger. STABILIZER: Statistically sound performance
evaluation. SIGARCH Comput. Archit. News, 41(1):219–228, March 2013.

[7] J. Flich, G. Agosta, et al. Exploring manycore architectures for next-generation HPC
systems through the MANGO approach. Microprocessors and Microsystems, 61:154 – 170,
2018.

[8] J. Flich et al. Enabling HPC for QoS-sensitive applications: The MANGO approach. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 702–707,
March 2016.

[9] Matteo Fusi, Fabio Mazzocchetti, Albert Farres, Leonidas Kosmidis, Ramon Canal, Fran-
cisco J. Cazorla, and Jaume Abella. On the use of probabilistic worst-case execution time
estimation for parallel applications in high performance systems. Mathematics, 8(3):314,
Mar 2020.

[10] L. Kosmidis, C. Curtsinger, E. Quiones, J. Abella, E. Berger, and F. J. Cazorla. Probabilistic
timing analysis on conventional cache designs. In 2013 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 603–606, March 2013.

[11] LoopPerfect. neither. https://github.com/LoopPerfect/neither.

[12] Giuseppe Massari, Anna Pupykina, Giovanni Agosta, and William Fornaciari. Predictive
resource management for next-generation high-performance computing heterogeneous plat-
forms. In Proceedings of the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS’19), Jul 2019.

[13] A. Pupykina and G. Agosta. Optimizing Memory Management in Deeply Heterogeneous
HPC Accelerators. In 2017 46th Int’l Conf on Parallel Processing Workshops (ICPPW),
pages 291–300, Aug 2017.

http://www.recipe-project.eu D3.4 RECIPE Timing Analysis Tools — 14

https://chef.heaplab.deib.polimi.it/source/libta
https://chef.heaplab.deib.polimi.it/source/libta
https://github.com/LoopPerfect/neither
http://www.recipe-project.eu

	Introduction
	Summary of the Timing Analysis Methodology
	Timing Analysis Tool
	libta: The API
	libta: Call Flow

	Summary

