
REliable Power and time-ConstraInts-aware Predictive management of heterogeneous
Exascale systems

WP2 Runtime Resource Management
Infrastructure

2.5 RECIPE Software Stack Integration

http://www.recipe-project.eu

This project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No

801137

http://www.recipe-project.eu

Grant Agreement No.: 801137
Deliverable: 2.5 RECIPE Software Stack Integration

Project Start Date: 01/05/2018 Duration: 42 months
Coordinator: Politecnico di Milano, Italy

Deliverable No: 2.5
WP No: 2
WP Leader: Giuseppe Massari
Due date: 30/07/2021
Delivery date: 06/08/2021

Dissemination Level:

PU Public Use X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Ser-

vices)
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 2

http://www.recipe-project.eu

DOCUMENT SUMMARY INFORMATION

Project title: REliable Power and time-ConstraInts-aware Predictive
management of heterogeneous Exascale systems

Short project name: RECIPE
Project No: 801137
Call Identifier: H2020-FETHPC-2017
Thematic Priority: Future and Emerging Technologies
Type of Action: Research and Innovation Action
Start date of the
project:

01/05/2018

Duration of the
project:

42 months

Project website: http://www.recipe-project.eu

2.5 RECIPE Software Stack Integration

Work Package: WP2 Runtime Resource Management Infrastructure
Deliverable number: 2.5
Deliverable title: RECIPE Software Stack Integration
Due date: 30/07/2021
Actual submission
date:

06/08/2021

Editor: G. Massari
Authors: G. Massari, F. Reghenzani, F.Sciamanna, M. Peta, G. Agosta, W.

Fornaciari, A. Cilardo, G. Tiano, L. Del Barone, M. Zapater, J.M.
Martinez, J. Flich

Dissemination Level: PU
No. pages: 47
Authorized (date): 06/08/2021
Responsible person: W. Fornaciari
Status: Plan Draft Working Final Submitted Approved

Revision history:

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 3

http://www.recipe-project.eu
http://www.recipe-project.eu

Version Date Author Comment
v.0.1 25/05/2021 POLIMI Initial skeleton
v.0.2 01/06/2021 CERICT First version of the LRM/PM contri-

butions
v.0.3 03/06/2021 POLIMI C/R first parts
v.0.4 05/06/2021 POLIMI NVIDIA Tegra integration
v.0.5 20/06/2021 UPV FPGA monitoring for MANGO
v.0.6 03/07/2021 POLIMI First revision and fixes
v.0.7 06/07/2021 POLIMI LRM section draft
v.0.8 15/07/2021 POLIMI Reliability support
v.0.9 16/07/2021 POLIMI Energy support
v.0.10 21/07/2021 POLIMI Timing support
v.0.11 25/07/2021 POLIMI LRM Platform integration revision
v.0.12 28/07/2021 CERICT CERICT contribution revised
v.0.12 29/07/2021 POLIMI C/R experimental results
v.0.13 06/08/2021 EPFL GRM section draft

Quality Control:

Who Date
Checked by internal reviewer CERICT 06/08/2021
Checked by WP Leader Giuseppe Massari 06/08/2021
Checked by Project Technical
Manager

G. Agosta 06/08/2021

Checked by Project Coordinator W. Fornaciari 06/08/2021

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 4

http://www.recipe-project.eu

COPYRIGHT

©Copyright by the RECIPE consortium, 2018-2021.

This document contains material, which is the copyright of RECIPE consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 801137 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

RECIPE is a project that has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 801137. Please see http://www.recipe-
project.eu for more information.

The partners in the project are Universitat Politècnica de València (UPV), Centro Regionale
Information Communication Technology scrl (CeRICT), École Polytechnique Fédèrale de Lau-
sanne (EPFL), Barcelona Supercomputing Center (BSC), Poznan Supercomputing and Net-
working Center (PSNC), IBT Solutions S.r.l. (IBTS), Centre Hospitalier Universitaire Vaudois
(CHUV). The content of this document is the result of extensive discussions within the RECIPE
©Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The infor-
mation contained in this document is provided by the copyright holders ”as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the RECIPE
collaboration, including the copyright holders, or the European Commission be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of the information
contained in this document, even if advised of the possibility of such damage.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 5

http://www.recipe-project.eu
http://www.recipe-project.eu
http://www.recipe-project.eu

Contents

1 Introduction 7
1.1 Overview and document structure . 8

2 Local Resource Manager: BarbequeRTRM 10
2.1 Platform Integration . 10

2.1.1 Platform Interfaces . 11
2.1.2 FPGA Monitoring Library . 13

2.2 Energy Monitor . 20
2.2.1 Application Energy Profiling . 21

2.3 Reliability Management Integration . 21
2.3.1 Checkpoint/Restore in Userspace (CRIU) 23
2.3.2 Advanced C/R Engine Library . 24
2.3.3 Reliability Manager Developments . 25

2.4 Timing Analysis Integration . 26

3 Global Resource Manager: SLURM 28
3.1 Platform Deployment and Integration . 28
3.2 Local Resource Manager and HELENNA Integration 29
3.3 Integration and support for consistent checkpoint/restore 30

4 Programming Models Integration 32
4.1 MANGO Programming Library refactoring . 32

4.1.1 NVIDIA Platforms Integration . 33
4.2 Adaptive Execution Model (AEM) Fortran wrapper 33
4.3 Adaptive Execution Model (AEM) and Reliability management 36
4.4 Integration of FPGA heterogeneous acceleration 37

4.4.1 OpenMPI relying on UCX for RDMA support 37
4.4.2 Demo Stencil application . 40
4.4.3 Checkpoint Overhead Characterization 43
4.4.4 RDMA Performance . 43

5 Conclusions 45

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 6

http://www.recipe-project.eu

1 Introduction
In every High-Performance Computing (HPC) platform the software stack plays a fundamental
role in terms of both functionalities exposed to the users and management strategy of the work-
load (scheduling, resource allocation) and the hardware (thermal, power, energy management).

In the RECIPE project, the software stack is a collection of frameworks and libraries cooperating
for achieving the objectives stated in the DoW, i.e., providing target HPC platforms with guar-
antees in terms of reliability and timing requirements for the hosted applications, while keeping
their energy efficiency.

The RECIPE reference platforms are characterized by heterogeneous configurations, featur-
ing multi-core CPUs, high-performance GPUs and custom accelerators deployed on integrated
FPGA boards. A further aspect to consider is that, due to the HPC domain, a certain (complex)
hardware configuration is typically replicated over a certain number of computational nodes.

Give these premises, the design and development of the RECIPE software stack has posed a
challenging effort. The heterogeneity of the hardware platforms and the contributions coming
from different work packages have required the definition of several interfaces and the continuous
revision of the developments in order to achieve a smooth and maintainable integration of all
the components.

The focus of Deliverable D2.5 is sketched in Figure 1. The picture shows the software components
lying on top of the hardware and the interaction flows among them. Starting from the top, the
Global Resource Manager (SLURM) runs resource management policies at the scope of the
entire (multi-node) platform, given also the input received from the Local Resource Manager
(BarbequeRTRM). This is responsible for the resource management actions at the level of the
single computational node, considering the monitoring and profiling of data collected through the
Platform Integration Layers and the WP3 libraries (Hardware Reliability and Timing Analysis).
The former is used for predicting the reliability of the managed hardware, with respect to the
local resource allocation choices. The latter provides models allowing us to perform statistical
execution times analysis, to identify the distribution of the WCET with respect to given resource
allocation choices and thus drive the local resource manager policies. The Platform Integration
Layers box instead must be considered a collection of low-level interfaces, exploited by the local
resource manager to built an internal abstraction layer on one side, and to support a wide set
of hardware configurations, on the other side.

Finally, the programming models aim at masquerading the complexity of the hardware, while
providing support to the local resource manager in terms of profiling activities, when possible.
As already explained in the previous deliverables, we provided some libraries and execution
models to make the application execution run-time manageable and allows the application to
adapt itself to the changing resource assignments. However, we developed also an approach to
support legacy applications, at the price of loosing the possibility of implementing an adaptive
behaviour.

In the previous deliverables, we described the single software components of the stack in detail.
In this deliverable, we tried to give a technically detailed view over the integration of the different
components. It is finally worth remarking that this represents the ground on top of which the
actual resource allocation policies are built, as it will be described in the next deliverable D3.7.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 7

http://www.recipe-project.eu

Global Resource Manager [SLURM]
(WP2)

Local Resource Manager
 [BarbequeRTRM]

(WP2)

Platform Integration Layers
(WP2/WP4)

Hardware Reliability
(WP3)

Timing Analysis
(WP3)

Hardware Platform

Programming
Models
(WP2)

Figure 1: Block diagram of the RECIPE software component / groups

1.1 Overview and document structure

In Deliverable D2.1, we introduced the overall design of the stack, discussing the initial interac-
tion flows among the resource managers, the programming models and the platform integration
layers. In deliverables D2.2 and D2.3 instead, we discussed the design and implementation details
of the local and the global resource manager, respectively. Finally, in D2.4, we covered several
aspects regarding the programming models and the challenges due to the programmability of
heterogeneous computing platforms, introducing the programming models inherited from the
H2020 MANGO Project experience.

Eventually, this D2.5 is the last deliverable planned by the Work Package 2. The goal of this
document is to provide a complete view over the entire software stack deployed on the RECIPE
platforms, according to the final developments and integration efforts. The software stack in-
cludes not only the effort carried out during the Work Package 2 activities, but also some
outcome, in terms of software components, developed by Work Packages 3 and 4.

The deliverable is structured as it follows. In Section 2, we go through the local resource manager
structure, focusing on the recent updates, with special attention to the pillars built for energy,
reliability and timing-aware resource allocation policies.

In Section 3, we report the last integration developments introduced in SLURM, with a focus
on the platform deployment, the integration of the HELENNA engine, used in UC3 application,
and the support to checkpoint/restore at the global scale.

In Section 4, we discuss the last developments of the MANGO Programming Library and the
Adaptive Execution Model, plus the support for exploiting the Remote Direct Memory Access
mechanisms on HPC applications spawned on multiple nodes and access FPGA accelerators.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 8

http://www.recipe-project.eu

Finally, in Section 5 we draw the conclusions, considering the experience gained in the effort put
for the WP tasks, the addressed challenges and the possible future research and developments
that could be taken into account as next steps.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 9

http://www.recipe-project.eu

2 Local Resource Manager: BarbequeRTRM
During the last period of the RECIPE project, the Local Resource Manager (Barbeque Run-
Time Resource Manager) has been developed further to complete the process of integration of
the target platforms and the external software frameworks. Such components of the RECIPE
software stack represent the outcome of different work packages (WP2, WP3, WP4).

In Figure 2, we show an updated version of the BarbequeRTRM internal components, according
to a layered view. It is worth saying that the architecture in the picture provides a partial view
of the local resource manager design. We deliberately omitted some components in order to
simplify the picture and let the reader focus on the developments carried out for the purpose of
accomplishing the RECIPE project objectives.

More in detail, some of the last developments involved the Application Manager, which keeps
track of the status of the managed applications. Here we further developed the application profil-
ing support by adding the timing analysis, as described in Section 2.4, through the exploitation
of the Timing Analysis Library.

For the reliability management part instead, in D2.2 we introduced the internal Reliability Man-
ager as the module responsible for monitoring the reliability of the hardware resources. We
extended this module, as explained later in Section 2.3, to adapt the checkpoint activities to
the status of the system at run-time, also based on the prediction provided by the Hardware
Reliability Library.

Finally, we introduced a new additional module, the Energy Monitor, specifically to measure/es-
timate the energy consumption of each managed hardware resource (processing units) of the
system. This has been enabled by the implementation of the missing Power Manager and
Platform Proxy derived modules, required for supporting all the expected configurations of
the RECIPE platform (NVIDIA PowerManager, TEGRA PowerManager, RECIPE PowerManager,
NVIDIA PlatformProxy, TEGRA PlatformProxy, RECIPE PlatformProxy), and the extension of
CPU PowerManager, with the energy monitoring support. This is explained in the Section 2.2.

The implementation effort just summarized represents the basis for the next and final step:
the implementation of the resource allocation policies. The policies will contribute to address
the problem of improving the energy-efficiency of the execution of the applications, maximiz-
ing the reliability of the hardware and providing the user applications with timing guarantees
when requested. The description of the policies and the related experimental results and will be
accurately reported in the next deliverable D3.7.

2.1 Platform Integration

In order to support a specific hardware platform we needed to integrate the access to the low-level
interfaces providing A) hardware resources enumeration and assignment; B) run-time monitoring
of their status (load, power consumption, temperature). Then, depending on the platform, we
could rely on standard interfaces (Linux’ sysfs and procfs), vendor libraries (e.g., NVIDIA,
AMD, Intel, etc. . .) or custom runtime layers, built on top of device drivers.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 10

http://www.recipe-project.eu

Linux kernel

 Application Runtime Library (RTLib)

cpufreq

Platform ManagerPower Manager

Application Proxy

Scheduler Manager
Synchronization

Manager

Application
Manager

Resource
 Manager

Scheduler Policy

cgroups sysfs

Application(s)

ACRE

FPGA Monitoring Library

Linux
Platform Proxy

Power Monitor

CPU Power
Manager

TEGRA Platform
Proxy

NVIDIA
Platform Proxy

Resource
Accounter

Reliability Manager

RECIPE
Platform Proxy

Energy Monitor

NVIDIA Power
Manager

TEGRA Power
Manager

RECIPE Power
Manager

NVIDIA Management Library CRIU

OpenCLHN Library

 MANGO Library (libmango)

Figure 2: BarbequeRTRM internal layers

2.1.1 Platform Interfaces

In this subsection we report the aforementioned low-level interfaces exploited by the Platform
Proxy and Power Manager derived modules, to get access to the status information of the
hardware resources and possibly control them. Such interfaces are grouped in the grey box

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 11

http://www.recipe-project.eu

of Figure 2. As we will see, for CPU and GPU we relied on interfaces already provided by the
operating system of the device vendors. For FPGA resources instead, we had to follow a different
approach, as explained in the following.

Linux cgroups Linux-based operating systems provide us with the control groups framework
[6], more commonly called cgroups. This framework represents the OS-level interface exploitable
to allocate resources, such as CPU time quota, CPU cores mapping, memory, network bandwidth,
etc. . . , among processes running on the system. In the BarbequeRTRM, we integrated the access
to cgroups to reserve CPU, memory and networking bandwidth resources. A work in progress is
also focusing on integrating the I/O bandwidth control of block devices. In the specific context
of RECIPE, we must consider the Linux cgroups as the knob for enforcing the reservation of
CPU resources only. Cgroups is mainly exploited by the Linux PlatformProxy module.

OpenCL Runtime OpenCL (Open Computing Language) has been already mentioned in
previous deliverables. It is an open standard for cross-platform, parallel programming of diverse
accelerators, aiming a providing a consistent API and runtime layer, whatever is the target het-
erogeneous computing system: desktop, supercomputer, cloud infrastructure, mobile devices or
embedded system [5]. Since most of the FPGA vendors come with their OpenCL support, we
decided to exploit the very small set of functions of the OpenCL API, to enumerate the OpenCL
platforms and the connected devices available on the system. This approach has been imple-
mented in the RECIPE PlatformProxy module. Then, depending on the target FPGA platform
selected, the BarbequeRTRM can be configured to link the OpenCL runtime or other custom
runtime libraries (see later). In summary, the OpenCL intermediation is required at boot-time
only. No other OpenCL functions are currently required by the BarbequeRTRM for manage-
ment purposes. This means that, the resource allocation is weak ly performed. In other words,
the local resource manager notifies the application (through the programming model library)
about the assigned devices. However, since there is no chance of actually constraining the access
to the computing devices, it is up to the OpenCL application to actually select the assigned
device. Overall, exploiting the vendor-provided OpenCL runtime is a portable and low latency
approach, but at the price of a low degree of control over the assignment of computing resources.

HN Library This library represents the low-level interface towards the MANGO FPGA clus-
ter. It implements a minimal OpenCL runtime, such that the MANGO FPGA can be made
accessible to resource manager and application. This layer has been deeply revised with respect
to the previous version released with the MANGO project, in order to improve the compatibility
and the portability of the upper software layers. More details on the last version of the library
are reported in D4.3.

Intel RAPL The last generations of Intel processors are characterized also by the presence
of the Running Average Power Limit (RAPL) [9], which is made by a hardware control logic
for thermal/power management and a set of counter registers, providing energy and power con-
sumption information. Such information typically does not come from an actual power meter,
but rather they are the output of a power model. In Linux-based operating systems, such an
interface is made accessible via the sysfs file-system [7]. According to the last developments in-
troduced in the BarbequeRTRM, the RAPL information are accessed by the CPU PowerManager

module, to get the information about the current energy consumed by the CPUs. In this regard,

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 12

http://www.recipe-project.eu

we would like to remark how the evaluation of the accuracy of the sampled values is out of the
scope of the RECIPE project.

NVIDIA Management Library NVIDIA provides the user with a library, called NVML
[8], including a C-based API for monitoring and controlling the GPU devices. A glimpse of
the monitoring capabilities of the library is provided by the nvidia-smi. The NVML is in-
tended to be a framework for building third-party software. In fact, in the BarbequeRTRM, the
NVIDIA PowerManager and the NVIDIA PlatformProxy implementations use the NVML func-
tions for enumerating the GPU devices installed in the system, reading the current temperature
and power consumption and potentially performing performance/DVFS-scaling.

NVIDIA Tegra According to the last DoW amendment, we added to the set of target plat-
forms for the experimental evaluations, a heterogeneous system based on NVIDA Tegra devices
(Jetson Xavier model). NVIDA Tegra is a System-on-Chip (SoC) series developed for mobile
devices and designed to emphasize performance, while maintaining good energy efficiency in
complex applications, like gaming and machine learning. In the RECIPE project, we installed
this kind of devices on a distributed system devoted to run machine-learning based workloads.
Unfortunately, for this family of devices we had to proceed with a further integration effort,
since Tegra is not included among the architectures supported by the aforementioned NVIDIA
Management Library. The status information of the SoC (including CPU and GPU) are in fact
exposed via sysfs file system and the tegrastats utility.

Therefore, we extended the BarbequeRTRM in order to enable power and resource manage-
ment on devices based on Tegra SoC, by introducing additional modules derived from the
base class PowerManager, as shown in Figure 3: we created the TEGRA_CPUPowerManager and
TEGRA_PowerManager: the former is in charge of accessing the CPU status, while the latter is
in charge of reading the GPU status. Both modules operate by parsing the system information
exposed via sysfs.

Finally, from the resource management standpoint, we added a new class derived from the base
class PlatformProxy: the TEGRAPlatformProxy class. The singleton instance is in charge of
registering the list of computing resources actually available, by interfacing the internal module
ResourceAccounter. A similar registration procedure is performed also for the PowerMonitor

and the EnergyMonitor modules, in order to enable the periodical retrieval of the temperature,
the power consumption and the current energy consumption information.

2.1.2 FPGA Monitoring Library

Monitoring the status of FPGA-based processing resources is much more challenging than for
the GPUs. This comes from the massive heterogeneity due to the (re)configurable nature of the
FPGAs. While for the on-board sensors, like power meters or thermal sensors, the vendors can
provide the user with a suitable interface (library or filesystem-based), for the monitoring of
other information, like the level of activity (or load) of custom accelerators, we may need to
introduce in the hardware design additional counter registers, along with the core processing
architecture.

In this regard, we decided to design and implement a single FPGA Monitoring Library (libfpg-
amon), coming with a unique interface for the local resource manager and hiding the platform-

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 13

http://www.recipe-project.eu

PowerManager

TEGRAPowerManager

PMResult GetLoad(br::ResourcePathPtr_t const & rp, uint32_t & perc)

PMResult GetTemperature(br::ResourcePathPtr_t const & rp, uint32_t & celsius)

PMResult GetClockFrequency(br::ResourcePathPtr_t const & rp, uint32_t & khz)

PMResult SetClockFrequency(br::ResourcePathPtr_t const & rp, uint32_t khz)

PMResult GetClockFrequencyInfo(br::ResourcePathPtr_t const & rp,
 uint32_t & khz_min, uint32_t & khz_max,
 uint32_t & khz_step)
PMResult GetAvailableFrequencies(br::ResourcePathPtr_t const & rp,
 std::vector<uint32_t> & freqs)

PMResult GetFanSpeed(br::ResourcePathPtr_t const & rp, FanSpeedType fs_type,
 uint32_t & value)

PMResult GetPowerUsage(br::ResourcePathPtr_t const & rp, uint32_t & mwatt)

PMResult GetPowerState(br::ResourcePathPtr_t const & rp, uint32_t & state)

PMResult GetPowerStatesInfo(br::ResourcePathPtr_t const & rp, uint32_t & min,
 uint32_t & max, int & step)
PMResult GetPerformanceState(br::ResourcePathPtr_t const & rp,
 uint32_t & state)

PMResult GetPerformanceStatesCount(br::ResourcePathPtr_t const & rp,
 uint32_t & count)

int64_t StartEnergyMonitor(br::ResourcePathPtr_t const & rp)

uint64_t StopEnergyMonitor(br::ResourcePathPtr_t const & rp)

CPUPowerManager

TEGRA_CPUPowerManager

PMResult GetLoad(br::ResourcePathPtr_t const & rp, uint32_t & perc)

PMResult GetTemperature(br::ResourcePathPtr_t const & rp, uint32_t & celsius)

PMResult GetClockFrequency(br::ResourcePathPtr_t const & rp, uint32_t & khz)

PMResult SetClockFrequency(br::ResourcePathPtr_t const & rp, uint32_t khz)

PMResult GetClockFrequencyInfo(br::ResourcePathPtr_t const & rp,
 uint32_t & khz_min, uint32_t & khz_max,
 uint32_t & khz_step)
PMResult GetAvailableFrequencies(br::ResourcePathPtr_t const & rp,
 std::vector<uint32_t> & freqs)

PMResult GetFanSpeed(br::ResourcePathPtr_t const & rp, FanSpeedType fs_type,
 uint32_t & value)

PMResult GetPowerUsage(br::ResourcePathPtr_t const & rp, uint32_t & mwatt)

PMResult GetPowerState(br::ResourcePathPtr_t const & rp, uint32_t & state)

PMResult GetPowerStatesInfo(br::ResourcePathPtr_t const & rp, uint32_t & min,
 uint32_t & max, int & step)
PMResult GetPerformanceState(br::ResourcePathPtr_t const & rp,
 uint32_t & state)

PMResult GetPerformanceStatesCount(br::ResourcePathPtr_t const & rp,
 uint32_t & count)

int64_t StartEnergyMonitor(br::ResourcePathPtr_t const & rp)

uint64_t StopEnergyMonitor(br::ResourcePathPtr_t const & rp)

Figure 3: BarbequeRTRM: NVIDIA Tegra Power managers

specific implementations under-the-hood. The library includes two main header files: one expos-
ing the user interfaces (fpgamon.h) and actually included by the BarbequeRTRM integration
code of the RECIPE PowerManager, and the other defining the interfaces for the platform-specific
contribution (fpgamon hal.h).

The main content of the former is reported in Listing 1. We defined the fpgamon context t data
type to store the general information of the system, in terms of number of specific platforms in-
cluded, pointers to the platform-specific implementations and vector of all the counters provided.
A data structure of such a type must be filled by the initialization function(fpgamon init())
and then provided as first argument to all the library functions. The functions currently defined
in the header file are mainly getters for status information like temperature, power consump-
tion and load, plus three functions devoted to the control of the, optionally provided, hardware
counters (get/reset actions). The functions take as additional arguments a pair of identification
numbers: one for the platform and one for the device. This approach is coherent with respect to
what commonly happens with OpenCL. We use the term platform for identifying the runtime
layer provided by a vendor and the term device to refer to a specific processing unit deployed on
the platform. The identification numbers of platforms and devices must be coherent with respect
to the values returned by the OpenCL runtime linked by the BarbequeRTRM and exploited by
the RECIPE PlatformProxy module.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 14

http://www.recipe-project.eu

Listing 1: fpgamon.h

1 /** fpgamon.h extract... */

2
3 typedef struct context

4 {

5 unsigned short int nr_platforms;

6 fpgamon_platform_t ** platforms;

7 fpgamon_ctr_array_ptr * counters;

8 unsigned short int * nr_counters;

9
10 } fpgamon_context_t;

11
12 typedef uint32 t fpgamon_platform_ids_t;

13
14 uint32 t fpgamon_get_version(void);
15
16 int fpgamon_init(fpgamon_context_t * ctx,

17 uint32 t nr_platforms,

18 fpgamon_platform_ids_t * platform_ids);

19
20 void fpgamon_shutdown(fpgamon_context_t * ctx);

21
22
23 uint16 t fpgamon_get_load(fpgamon_context_t * ctx,

24 uint16 t plat_id,

25 uint16 t device_id);

26
27 uint32 t fpgamon_get_temperature(fpgamon_context_t * ctx,

28 uint16 t plat_id,

29 uint16 t device_id);

30
31 uint32 t fpgamon_get_power(fpgamon_context_t * ctx,

32 uint16 t plat_id,

33 uint16 t device_id);

34
35 uint16 t fpgamon_get_nr_counters(fpgamon_context_t * ctx,

36 uint16 t plat_id);

37
38 fpgamon_ctr_array_ptr fpgamon_get_counters(fpgamon_context_t * ctx,

39 uint16 t plat_id,

40 uint16 t device_id,

41 uint16 t * count);

42
43 void fpgamon_reset_counters(fpgamon_context_t * ctx,

44 uint16 t plat_id,

45 uint16 t device_id);

The fpgamon hal.h header instead, provides the platform integrators with a simple interface to
plug-in their specific support. As we can see in Listing 3, the interface is basically represented

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 15

http://www.recipe-project.eu

by the fpgamon platform t data structure, featuring a string to store the platform name, plus
a set of function pointers. This means that, at run-time, the library will load all the platforms
configured at compile-time, by properly filling a vector of such data structures and forwarding the
library function calls to the target platform, on the basis of the platform identification number
specified.

Listing 2: fpgamon hal.h

1 /*

2 * File: fpgamon_hal.h

3 * ...

4 */

5
6 typedef struct platform

7 {

8 char name[FPGAMON_PNAME_MAXLEN];

9
10 int (*init)();

11 void (*shutdown)();

12 uint16 t(*get_load)(uint16 t);
13 uint32 t(*get_temperature)(uint16 t);
14 uint32 t(*get_power)(uint16 t);
15 uint16 t(*get_nr_counters)();
16 uint32 t(*get_counters)(uint16 t,
17 fpgamon_ctr_array_ptr * ctrs,

18 uint16 t len);

19 void (*reset_counters)(uint16 t);
20
21 } fpgamon_platform_t;

The MANGO cluster platform-specific support A first FPGA-based platform exploited
by RECIPE and inherited from the H2020 MANGO project, is represented by the MANGO
cluster, based on several proFPGA modules. The support, developed by UPV, hides, as much
as possible, the low-level details and specificities of the cluster communication requirements, for
accessing the status information of each single FPGA module.

The MANGO cluster modules provide real-time information of the physical devices building the
system for: number of devices attached, status of the boards (up-down), number of extension
boards connected to the FPGA modules (memories, communication interfaces, . . .), temperature
and real-time voltage and current of the in-board power supplies.

Access to the information provided by the sensors in the different FPGA modules of the MANGO
cluster is done through a separate communication interface, i.e., the FPGA monitoring library
utilizes a different communication interface, with a different communication protocol, with re-
spect to the interface used for compute data exchange between host applications and FPGA
devices. This relies on the MMI64 PCI Express driver, described in D4.3. This approach shows
the advantage of decoupling the control path from the data path, thus preventing MANGO clus-
ter management and monitoring tasks from impacting the performance of the communications
between host applications and compute FPGAs. In the same manner, the local resource man-
ager monitoring activity will not be affected by any possible congestion of the communication

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 16

http://www.recipe-project.eu

interface between host applications and the compute FPGAs, due to data transfers. This way,
the FPGA monitor library prevents any degradation on compute data transfer rates that the
monitoring task of the devices in the MANGO cluster may cause.

In order to handle the dedicated communication interface with the MANGO cluster, we imple-
mented in the the FPGA monitor library a couple of additional functions. These functions are
necessary to start and stop the dedicated communication interface with the MANGO cluster.

This platform-specific contribution implemented the previously described API as it follows:

init() initialize a dedicated communication interface with MANGO cluster specified in function
parameters. Check system configuration and initial system status. Start sensor reading
task.

shutdown() Finish all related processes with MANGO cluster specified in function parameters.
Finish all ongoing sensor reading processes. Stop sensor reading task. Close dedicated
communication interface with MANGO cluster. Release communication interface.

get load() Get current utilization of FPGA module specified in function parameters.

get temperature() Get current temperature of FPGA module specified in function parame-
ters.

get power() Get current power consumed by FPGA module specified in function parameters.
Value is calculated from the information reported by the different sensors in the board.

The MANGO cluster provides accurate and detailed information of voltage and current supplied
by the different power supplies present in each FPGA module. Each FPGA module includes
dedicated power supplies for each extension site of the board, for the module communication
transceivers, for the board surrounding logic, and for the FPGA chipset itself.

The information returned by the MANGO cluster may vary depending on the type of FPGA
module, since some FPGA modules may have different number and type of hardware sensors. The
FPGA monitor library implements a unique data structure capable to store all the information
returned by any FPGA module variant, so after reading the information from the FPGA module,
it is stored in a common format independent of the FPGA module type it comes from.

The hardware monitoring data structure is:

Listing 3: fpgamon hal.h

1 typedef struct {
2
3 float pvio ta1; //!< voltage value of PVIO for connector TA1
4 float pvio ta2; //!< voltage value of PVIO for connector TA2
5 float pvio tb1; //!< voltage value of PVIO for connector TB1
6 float pvio tb2; //!< voltage value of PVIO for connector TB2
7 float pvio ba1; //!< voltage value of PVIO for connector BA1
8 float pvio ba2; //!< voltage value of PVIO for connector BA2
9 float pvio bb1; //!< voltage value of PVIO for connector BB1
10 float pvio bb2; //!< voltage value of PVIO for connector BB2
11 float pv fpga core; //!< voltage value of FPGA core voltage
12 float pv p0v9; //!< voltage value of FPGA aux P0V9
13 float pv p1v8; //!< voltage value of FPGA aux P1V8
14 float pv rgxb; //!< voltage value of FPGA GXB receiver

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 17

http://www.recipe-project.eu

15 float pv tgxb; //!< voltage value of FPGA GXB transmitter
16 float current pvio ta1; //!< current value of PVIO for connector TA1
17 float current pvio ta2; //!< current value of PVIO for connector TA2
18 float current pvio tb1; //!< current value of PVIO for connector TB1
19 float current pvio tb2; //!< current value of PVIO for connector TB2
20 float current pvio ba1; //!< current value of PVIO for connector BA1
21 float current pvio ba2; //!< current value of PVIO for connector BA2
22 float current pvio bb1; //!< current value of PVIO for connector BB1
23 float current pvio bb2; //!< current value of PVIO for connector BB2
24 float current pv fpga core; //!< current value of FPGA core voltage
25 float current pv p0v9; //!< current value of FPGA aux voltage
26 float current pv p1v8; //!< current value of FPGA aux voltage
27 float current pv rgxb; //!< current value of FPGA GXB receiver
28 float current pv tgxb; //!< current value of FPGA GXB transmitter
29 int core temperature; //!< current die temperature [◦C]
30 int gxb tile1 temperature; //!< current transceiver tile temperature [◦C]
31 unsigned char temp error; //!< over temperature error
32
33 } hw sys fm status t;

Accessing the sensors of an FPGA module takes a few milliseconds, with an upper bound less
than ten milliseconds. So, the total amount of time to get the statistics of the complete system
will depend on the number of devices to read the sensors.

To avoid the time overhead needed to acquire the data from the sensors, the FPGA monitoring
library launches a thread during the library initialization function call to get the data before
the resource manager requests it. This thread triggers the read of the values of the sensors in
the FPGA modules in a loop fashion function. Therefore, when the resource manager sends
the request of data for a specific FPGA module, the FPGA monitor library processes the data
stored in the structure associated to that FPGA module, and immediately returns the requested
information to the resource manager.

The FPGA monitor task thread runs and collects the information from the MANGO system
until the resource manager triggers the shutdown function. The shutdown function will command
the thread to finish the data collection process, to finally release the dedicated communication
interface with the MANGO cluster. This process is shown in Figure 4.

By means of the FPGA monitor library, the resource manager can seamlessly access the readings
of the different sensors in the FPGAs of the MANGO cluster from the FPGA monitoring library
via the common HW monitoring API functions without having to handle the communications
with the MANGO cluster.

The Alveo platform-specific support. A second FPGA platform included in the RECIPE
prototype is an Alveo FPGA board mounted in the CERICT prototype. The platform-specific
support, named RECIPE rFPGA, is contained in the alveo xdma sub-directory. The platform-
specific code implements the same API already presented:

init() initialize the communication interface with the rFPGA shell.

shutdown() release the communication interface.

get load() get current utilization of FPGA module specified in function parameters.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 18

http://www.recipe-project.eu

Figure 4: MANGO cluster integration in the FPGA Monitoring Library

get temperature() get current temperature of FPGA module specified in function parameters.

get power() get current power consumed by FPGA module specified in function parameters.

For the Alveo-based prototype we rely on two resources available on the COTS acceleration
cards used at CERICT:

� The SYSMON primitive and associated IP wrapper available for Xilinx UltraScale devices,
which was used in the RECIPE prototype for accessing the on-chip temperature sensors.

� The Card Management Solution Subsystem (CMS Subsystem), a MicroBlaze-based design
equipped with a firmware which autonomously reads sensor information from an external
satellite controller mounted in the card.

Different temperature reads are associated with each Super Logic Region (SRL) found in the
FPGA device. The platform-specific code in the library is used to compute a single value, as
required by the API, by computing in software a weighted average which takes into considera-
tion the actual occupancy of each SRL. For power values, the CMS Subsystem firmware polls
for sensor information every 100ms from the external satellite controller. In particular, the phys-
ical reads are related to the voltage and current values associated with three power sources in
the card, namely 12V-PEX, 12V-AUX, and VCCINT. In the library, we use them to derive
instantaneous, maximum, and average power consumption values, then passed to the host-side
local runtime manager as a single combined value. The initialisation of the platform requires a
configuration file, found in the etc sub-directory, containing some information about the moni-
toring IPs contained in the hardware design. More detail on the hardware design of the RECIPE
rFPGA custom shell are provided in Deliverable 4.3.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 19

http://www.recipe-project.eu

loop

loop

Schedule
Manager

Synchronization
Manager

Synchronize(app)

Resource
Manager

StopSamplingResourceConsumption()

Energy Monitor

UpdateApplicationEnergyConsumption(app)

Schedule()

StartSamplingResourceConsumption()

Figure 5: BarbequeRTRM resource allocation process with energy monitoring integration.

2.2 Energy Monitor

Part of the monitoring activity, enabled by the integration of the interfaces just described, is
exploited by a new BarbequeRTRM module called Energy Monitor. This new component plays a
key role in driving the local resource manager towards energy efficient resource allocation choices.
In Figure 5, we sketched the sequence diagram of the core component of the BarbequeRTRM
(Resource Manager), while coordinating the energy monitoring activity with the scheduling of
the managed applications and the enforcement of the resource allocation decision.

When a new resource allocation procedure is launched, the current energy consumption moni-
toring is stopped (StopSamplingResourceConsumption()). In case of first resource allocation,
this action has not effect. On the contrary, if the system has been working for a while, this
provides the local resource manager with a snapshot of the energy consumption for each of the
managed resources. The function UpdateApplicationEnergyConsumption() then is invoked for
each managed application to estimate the quota of energy consumption due to the execution of
the application. Hence, this profiling activity can be exploited by an energy-aware resource allo-
cation policy, once invoked through the Schedule() function of the Schedule Manager. Once the
resource allocation policy terminates, the invocation of Synchronize() from Synchronization
Manager leads to enforcement of the resource assignments, by accessing the low level inter-
faces integrated in the Platform Proxy modules of each managed resource (e.g., CPU, GPU,
FPGA accelerators). Finally, the energy consumption monitoring can be resumed by calling
the StartSamplingResourceConsumption() member function of Energy Monitor. One last de-
tail has been omitted for not overcomplicating the picture. The calls to the Energy Monitor ’s

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 20

http://www.recipe-project.eu

member functions are dispatched to all the Power Manager modules (e.g. CPU PowerManager,
RECIPE PowerManager), triggering the specific start/stop action for each managed resource
(member functions StartEnergyMonitor() and StopEnergyMonitor()).

Overall, what happens is that we provide the resource allocation policy with energy consumption
profiles for each hardware resource and managed application, in the time interval elapsed since
the last policy execution. The length of this period can be then configured on the basis of the
specific target system.

2.2.1 Application Energy Profiling

The estimation of the energy consumption contribution due to each managed application relies
on the profiling support provided with the Run-Time Library (RTLIB) (see D2.1, D2.2, D2.4)
through the Adaptive Execution Model. We briefly recall the concepts behind this execution
model. The application runs following the flow shown in Figure 6. The execution of the applica-
tion is essentially synchronized with the BarbequeRTRM, such that for each update of the set of
assigned resources, the application can jump in its onConfigure() function to reconfigure itself
with respect to the new availability of resources.

The regular execution instead is characterized by cycles of onRun() and onMonitor() invo-
cations. These functions execute, respectively, the core of the computation and (optionally) a
custom performance monitoring routine. At the end of each cycle, the library generates a profil-
ing report, including the counter of the cycles and an estimation of the CPU load generated by
the application. This report is then sent to the resource manager.

At this point, the previously mentioned UpdateApplicationEnergyConsumption() function can
combine this profiling information and the Energy Monitor data to produce an energy efficiency
metric. This metric can be exploited by an energy-aware resource allocation policy. We called this
metric Energy-Per-Cycle (EpC), which is therefore an estimation of how much energy has been
consumed, on average, for each application execution cycle, since the last resource allocation
policy run. We will provide an example of exploitation of the EpC, by describing the energy-
aware resource allocation policy in D3.7.

2.3 Reliability Management Integration

According to the DoW, we stated that, in order to properly maximize the reliability of HPC/Ex-
ascale computing platforms, we need to put in place a mix of proactive and reactive strategies. To
this aim, the resource managers need to 1) access run-time hardware status information; 2) ex-
ploit low-level mechanisms to restore the status of a faulty execution. The first point is addressed
by the monitoring components previously described. The status information retrieved will be
then exploited as explained in WP3 deliverables and briefly mentioned later in this section.

The second point instead has been already discussed in deliverable D2.2, where we described
the overall reliability management strategy and the implementation of the ReliabilityManager
module of the BarbequeRTRM. In this deliverable, we focus on the Checkpoint/Restore mecha-
nisms integrated or developed ad-hoc for workload running on CPUs or FPGA located processing
units.

Checkpoint/Restore for GPUs instead deserves a separate chapter. While the need for transpar-

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 21

http://www.recipe-project.eu

Figure 6: BarbequeRTRM Adaptive Execution Model for managed applications.

ent checkpointing of GPUs has grown in the last decade, the support for it has been dropped
[4]. Since 2011, many efforts have been made to develop C/R tools for (NVIDIA) GPUs, but all
of them stopped working with the release of CUDA 4.0, due the introduction of the Unified Vir-
tual Addressing (UVA) between host and GPU device, later refined, with CUDA 6.0, to Unified
Virtual Memory (UVM). After these upgrades, all the previous checkpointing technologies be-
came ineffective, since they created inconsistencies between host and GPU device address space
during the restore of the checkpointed CUDA library and the associated allocated memory at
their original address. Recently, two new tools, CRCUDA [11] and CRUM [3], were released,
trying to solve the problem through the use of separate proxy processes, however exposing lim-
itations in terms of overhead and partial support for UVM. To the best of our knowledge, only
a recent DMTCP plugin, CRAC [4], has had successful results in the workaround of the UVM
problem. However, although its source code is available [2], the project is for the time being at
an embryonic state.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 22

http://www.recipe-project.eu

2.3.1 Checkpoint/Restore in Userspace (CRIU)

As already mentioned in D2.2, for the managed processes running on CPUs, we rely on the well-
known Checkpoint/Restore in Userspace (CRIU) [1]. CRIU is in fact a software tool for Linux
Operating Systems providing several features, starting from the simple Checkpoint/Restart func-
tionality, arriving at the more complex live migration and remote debugging.

CRIU is currently integrated into a variety of software (e.g. OpenVZ, Docker, Podman) and it
is packaged for many Linux distributions. It copes with the complexity of an in-kernel check-
point/restore approach by implementing as many functionalities as possible in the user space,
using existing interfaces to implement the services.

The services offered by CRIU can be exploited through three different interfaces: Command Line
Interface (CLI), Remote Procedure Call (RPC), which uses Google Protocol Buffers to encode
its calls, and a C Application Program Interface (C API) called libcriu.

BarbequeRTRM links libcriu in the Linux Platform Proxy, for the Checkpoint/Restore func-
tionalities. In order to carry out the checkpoint routine, it exploits several functions, including
criu_set_images_dir_fd(), criu_set_log_level() and criu_set_log_file("dump.log"),
to manage target directory and log files, criu_set_leave_running(), in order to allow the re-
sumption of the application after the completion of the checkpoint, and, of course, criu_dump()
to perform the dump of the image.

The checkpoint procedure is carried out by CRIU in three main steps:

Collect and freeze process tree. It walks through the /proc/pid/task/ directory to recur-
sively collect the children in /proc/PID/task/TID/children. In the process, tasks are
seized by PTRACE_SEIZE command.

Collect and dump tasks’ resources. From /proc file system all the needed information is
retrieved: VMAs areas are parsed from /proc/PID/smaps, mapped files are collected from
/proc/PID/map_files, file descriptors from /proc/PID/fd and core parameters from
/proc/PID/stat. Then, parasite code is injected to perform the dump.

Cleanup. The parasite code gets dropped out and the original code gets restored.

As for the restore functionalities, BarbequeRTRM makes use of criu_set_ext_unix_sk() and
criu_set_tcp_established(), to handle possible socket and TCP connections, while resorting
to criu_set_evasive_devices(), to manage paths become inaccessible. The actual restore is,
then, initiated with the command criu_restore_child().

In CRIU, the restore procedure is, as well, composed by a series of steps:

Restore shared resources. CRIU reads from the image files which processes share which
resources and charges one process with their restore. At this point, the others can obtain
the shared resources in a variety of ways, e.g. by inheriting them in a later session or by
SCM_CREDS messages.

Fork the process tree CRIU calls fork() many times in order to re-create the checkpointed
processes.

Restore basic task resources CRIU restores almost all resources (e.g. opening files, prepar-
ing namespaces, mapping the private memory areas), except (i) memory mappings exact

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 23

http://www.recipe-project.eu

location (ii) timers (iii) credentials (iv) threads.

Switch to restored context, restore the rest and continue The exceptions above are made
since CRIU needs to morph into the target process to complete the restore. This means
that it has to unmap all its memory to map the target’s and, in this act, the code doing
the munmap and mmap must exist. For this reason, a small piece of code, independent of
both CRIU’s and the process’ mappings, is launched to finalize the restore.

2.3.2 Advanced C/R Engine Library

Checkpoint/Restore for FPGA resources instead has required considerations similar to the FPGA
Monitoring Library case. We designed and implemented an additional library, called Advanced
C/R Engine Library (libacre), providing a well-defined API to both the local resource manager
and the developers of the platform-specific support. Differently from the libfpgamon, the ACRE
Library code base has been written in C++. Therefore the API is mainly exposed by the virtual
class CheckpointRestore, as show in Listing 4.

Listing 4: acre.h

1 class CheckpointRestore

2 {

3
4 public:
5 using image_location_t = std::string ;

6 using task_id_t = int
7 using hardware_id_t = std::string;

8
9 virtual ~CheckpointRestore() {};

10 virtual void checkpoint(const hardware_id_t &, task_id_t &) = 0;

11 virtual void restore(const hardware_id_t &, task_id_t &) = 0;

12 virtual void freeze(const hardware_id_t &, task_id_t &) = 0;

13 virtual void thaw(const hardware_id_t &, task_id_t &) = 0;

14 void set_image_path(const image_location_t &) noexcept;

15 image_location_t get_image_path() const noexcept;

16
17 private:
18 std::string image_path;

19
20 };

All the member functions provided by the class take a pair of identification numbers, one for the
hardware platform and the other for the specific running task, which could have been directly
implemented in hardware. The set of control actions, for which the class requires the platform-
specific implementations, include performing the checkpoint of a target task, freeze/thaw the
execution of the target task, restore the execution given a previous checkpoint image. The path
of the checkpoint images can be configured through the set image path().

This means that for each platform-specific support we expect the developers to extend the library
code base, by introducing the definition and implementation of additional classes derived from
CheckpointRestore. Therefore, on the user side, we can instantiate the specific derived class,

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 24

http://www.recipe-project.eu

representing the interface towards the FPGA platform actually installed into the system.

FPGA Checkpoint/Restore support. Platform-specific support in the library includes the
contribution for FPGA Checkpoint/Restore provided by CERICT for the COTS-based proto-
type. In that respect, CERICT has developed two low-level libraries: 1) the XDMA Communica-
tion Library), providing the low-level functions used to interact with the Alveo FPGA card, and
2) the XDMA Checkpoint Library, containing several functions and structures used to provide
the FPGA Internal Configuration Access Port Controller with the information needed to per-
form a partial reconfiguration or a readback of a dynamic region on save/restore operations. The
XDMA Checkpoint Library functions are declared in xdma checkpoint.h and are independent
of the particular dynamic region, while design-specific information is provided by means of two
structures: 1) checkpoint info, containing high-level information such as the location and size
of the golden partial bitstream, the readback file, and the readback bitstream, as well as low-
level information related to the internal structures of the bitstreams, e.g. the number and the
offsets of the write sequences in the bitstream; 2) conf write sequence, containing the mapping
between the golden partial bitstream and the full bitstream, which is necessary to update the
contents of a partial bitstream with the dynamic execution state information extracted from the
FPGA. The mapping information is static and can be stored in a configuration file. Note that all
the functions interacting with the ICAP Controller require the XDMA Communication Library
to be installed. The XDMA Communication Library and the XDMA Checkpoint Library are
thoroughly described in Deliverable 4.3 as a part of the RECIPE FPGA acceleration middleware.

The integration in the ACRE Library is supported by two header files, located in the src/xdma

and include/xdma sub-directories:

� XDMA Target.h includes the header files from both the XDMA Communication Library
and the XDMA Checkpoint Library.

� libacre xdma.h contains the declaration of the XDMACheckpointRestore class, which is
used to implement the CheckpointRestore interface.

2.3.3 Reliability Manager Developments

The finalization of the integration layers of the target platforms and the availability of the afore-
mentioned Hardware Reliability Library has enabled the introduction of the last developments
into the Reliability Manager module of the BarbequeRTRM. The initial version of this com-
ponent of the local resource manager has been described in D2.2. We improved the previous
implementation by operating on two aspects:

1. Completing the hardware resource monitoring support with the exploitation of the Hard-
ware Reliability Library

2. Adapt the checkpoint rate at run-time on a per-application basis.

The first point allows the reliability-aware resource policies to monitor the status of the hardware
and then trigger a suitable management action, as already described in D2.2. In other words,
in case of unreliable processing cores, the policy can decide to migrate the workload occupying
such resources, to freeze the execution of some tasks or to control the processor by switching-off
(or idling) the involved cores, or scaling the voltage-frequency pair.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 25

http://www.recipe-project.eu

More specifically, we integrated the access to the Hardware Reliability Library (libhwrel) func-
tions, such that the local resource manager can periodically check for hardware reliability pre-
diction. This functionality must be properly enabled via the make menuconfig command of the
BOSP build system. Similarly to the FPGA Monitoring Library, also the Hardware Reliability
Library provides a well-defined interface to the resource manager, while leaving the possibility
of implementing multiple models under the hood. Currently, the only model provided is the one
developed by BSC in the WP3, called bschwrel. At run-time, in order to properly feed the
libhwrel with the required data, the BarbequeRTRM needs to read the performance counters
of the system. This is done by the corresponding PlatformProxy (LinuxPlatformProxy in our
case) function, which makes the hardware call transparent to the libhwrel.

For the second point instead, in D2.2 we started with a strategy based on performing the
checkpoint of the managed applications, on a periodical basis, with the length of the period
set to a fixed (configurable) value. Now, other than keeping the possibility of configuring the
BarbequeRTRM with this option set, we introduced the Dynamic Checkpoint Scheduler. This
extension has made the reliability management strategy run-time adaptive and aware of the
application requirements. The Reliability Manager in fact, can now define a per-application
checkpoint rate, based on the status of the platform and the impact on the application execution,
as it will be briefly explained in 4.3.

Further details on the policy implementing this adaptive checkpoint rate will be provided with
deliverable D3.7.

2.4 Timing Analysis Integration

The timing analysis has been integrated by introducing a suitable library, the Timing Analysis
Library (shorten libta, already described in detail in Deliverable D3.4) and then by adding the
needed glue logic in the BarbequeRTRM. We briefly recall the structure of the library here. The
main component is represented by the abstract class TimingAnalyzer, which provides a common
interface for enabling the integration of multiple timing analysis tools. An object derived from
TimingAnalyzer should take input objects of type Request and produce a Response object as
output. The Response can then be specialized in ResponsePWCET or ResponseWCET depending
on whether the output is a distribution or the Worst-Case Execution Time (WCET) value only.
Starting from this library interface, we implemented two timing analyzers for Measurement-
Based Probabilistic Timing Analysis (MBPTA):

� bscta: developed by BSC and implementing the MBPTA-CV technique, as described in
D3.4; and

� chronovise: developed by POLIMI and implementing the traditional MBPTA techniques
as described in the related paper [10].

The implementation of these two tools demonstrated the flexibility of the library interface to
enable the integration of any timing analysis tool.

Having a common and general interface for the timing analysis tools, we extended Barbe-
queRTRM to integrate the execution time collection, the call to the timing analysis library,
and the storing of the results in order to give the resource management policy access to them1.

1The details on how a resource management policy exploits such data is a subject of the deliverable D3.7 at

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 26

http://www.recipe-project.eu

In particular, each Application object in the BarbequeRTRM, represents a descriptor of a
AEM-integrated application (see D2.2, D2.4). This object includes also the application profiling
information (struct RuntimeProfiling t). We extended this set of information by adding the
the pwcet sub-structure shown in Listing 5.

Listing 5: The pwcet sub-struct

1 struct
2 {

3 std::list<int> cycle_times; // In ms

4 double wcet; // pWCET @ 10^-9

5 double mu; // pWCET - location

6 double sigma; // pWCET - scale

7 double xi; // pWCET - shape

8 } pwcet;

The first member of the structure (cycle times) is filled with the execution time values of each
onRun of the application (see Figure 6). When a sufficient number of execution time values are
collected, then the libta analysis execution function is called by the Application object itself.

However, to determine the minimum number of execution time values is non-trivial. On the
BarbequeRTRM side, a constant threshold is selected at compile-time, which is usually set very
low, so still insufficient for the libta to produce an estimation of the (p)WCET. However, it helps
to avoid useless calls to the libta when the number of samples is low, which would obviously
generate a ”too low number of sample error”. In fact, each implementation of the libta defines its
own function to determine the minimum amount of samples required. For instance, chronovise
uses a sequence of statistical tests to determine the validity of the generated (p)WCET. The
minimum amount of samples required is a non-constant value, and usually depends on the specific
application and system under analysis.

Finally, when the libta function returns a successful value, the requested WCET or pWCET is
stored in the above structure, respectively in wcet (computed on the pWCET distribution at a
probability of violation of p = 10−9, and the three variables mu, sigma, xi representing the three
parameters of the Generalized Extreme Value Distribution or Generalized Pareto Distribution.

A resource allocation policy can thus exploit the results of such analysis, by considering the
relationship with the assigned resources or the presence of co-scheduling conditions. As a conse-
quence, the policy can revise the allocation of resources in order to meet the actual application
timining requirements. This is the goal of the timing-aware resource allocation policy that will
be explained in D3.7.

the end of the project.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 27

http://www.recipe-project.eu

SLURM Resource
Manager

3D-ICE
Thermal modeling

Thermal
prediction

Application
Launcher

Global thermal
control

$> run Application ... System constraints
(power, thermal, …)

Global Resource Manager

Application
Dispatcher

Multi-objective
workload

allocation and
optimization Long-term

reliability models

App Constraints
(QoS, performance...)
App Off-line profiling

Figure 7: Overview of the Global Resource Manager (SLURM) with global scale software com-
ponents.

3 Global Resource Manager: SLURM
In this deliverable we report the changes performed in the infrastructure of the Global Resource
Manager (GRM) with respect to those provided as part of D2.3. More specifically, we provide a
global picture of how the GRM works as part of the integration with the remaining SW stack of
RECIPE, and provide details of the integration with the Local Resource Manager (LRM) and
with the other SW tools (such as HELENNA) that are integral part of the RECIPE platform. To
showcase this, we focus on Use Case 3 (Epilepsy detection application), which exploits the full
SW/HW stack, using the GRM, LRM and HELENNA, while also exploiting all the heterogeneous
resources (FPGA, GPU and CPU - with and without MKL libraries).

The final assessment of the energy savings achieved by the overall SW/HW stack will be provided
as part of D1.9. In this deliverable we limit ourselves to explaining the status of SW developments
to achieve integration.

3.1 Platform Deployment and Integration

The overall picture of the GRM is the same than the one provided in D2.3, as can be seen in
Figure 7.

One of the main changes is the way in which the SLURM GRM is deployed. In order to ensure
that checkpointing remains consistent across nodes, instead of deploying the different slurmd
daemons as a docker container, we rolled back to a native deployment of slurmd daemons, while
keeping the slurmctld controller as a container, still deployed using docker swarm. A shared unit
is also put in place so that In this way, we aim at keeping the solution lightweight and easy to
deploy, while still providing the required capabilities for checkpoint and restore. This is discussed
in greater detail in the next subsection.

In order for the GRM to be able to correctly understand and list all the resources available, we
stick to the same procedure used in D2.3, which consists on using a cluster architecture builder,
which lists the available resources as a JSON file, as shown 6

Listing 6: Example of initial architecture input file

1 {

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 28

http://www.recipe-project.eu

2 "name": "RECIPE Cluster",

3 "version": "1.0.1",

4 "master": "gn0",

5 "architecture": {
6 "recipe0": {
7 "id": "recipe0",

8 "master": 1,

9 "components": {
10 "fpga-acc1": 0,

11 "fpga-acc2": 0,

12 "fpga-acc3": 0

13 }
14 },
15 "recipe1": {
16 "id": "recipe1",

17 "master": 0,

18 "components": {
19 "gpu": 0,

20 }
21 },
22 "recipe2": {
23 "id": "recipe2",

24 "master": 0,

25 "components": {
26 "gpu": 0,

27 }
28 }
29 }
30 }

The cluster file specified in JSON is internally parsed to change the configuration files of slurm
and understand the available resources internally. Therefore, SLURM will be able to transpar-
ently understand the existence of new available HW resources that were not still supported in
D2.3, such as FPGAs.

Policies for choosing the available resources and cluster availability are therefore updated in the
same way than before, that is, by creating a directional graph where all resources are constantly
updated (via a Networkx object that is instantiated in this step has to be a DiGraph), as shown
in Figure 8.

This architecture is kept as it was, as it allows to integrate new hardware resources and fine tune
policies. The major changes to the structure of the GRM are therefore provided below.

3.2 Local Resource Manager and HELENNA Integration

The new version of the GRM allows integration not only with the LRM, but also with the
underlying HELENNA platform in a transparent way, so that resources that run over HELENNA

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 29

http://www.recipe-project.eu

Figure 8: Network obtained after creating the initial network architecture given the configuration
file shown in Listing 6

can be acquired via the GRM. In this sense, SLURM provides support for both applications
running using the Adaptive Execution Model (AEM) (which is described to a greater extent in
the next section) and using HELENNA.

The way in which this allocation is performed is as follows:

� The JSON cluster architecture file has to be properly filled-in with the available resources
in the cluster. This process can be automated with the use of scripts, but is currently
performed in a manual way.

� Creating the appropriate SLURM-compliant sbatch scripts to launch the workloads.

� Within the sbatch scripts, it suffices to call applications already integrated with the AEM
through the BBQ RTRM command line.

� Within the sbatch scripts, to launch applications that require HELENNA support, it suf-
fices to call applications through the HELENNA command line. This implies that, for
instance, for the specific case of UC3, we first need to provide the description of the CNN
using the format of HELENNA (creating input file in the HELENNA format, as described
in deliverable D1.8) and then calling HELENNA through SLURM using the sbatch script,
or by simply calling HELENNA within srun.

The assessment of overheads and performance of the overall software stack will be provided as
part of D1.9.

3.3 Integration and support for consistent checkpoint/restore

One of the challenges within the integration of GRM and LRM is keeping consistent copies of the
checkpoints that can be created at the local level by the LRM at the global level, making sure
that restore is consistent across nodes. To tackle this issue, we provide two different capabilities
at the GRM level:

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 30

http://www.recipe-project.eu

� Firstly, we create a common shared disk space that is controlled and created by the SLURM
controller, to ensure that there exists a shared and consistent place where checkpoints can
be created and globally stored.

� Secondly, similarly to what we did when listing availability of nodes for allocation, we also
create a Networkx object that holds the status of the checkpoints at the global level. How-
ever, in this case, instead of marking resources as available or unavailable, we update the
graph and assign weights to the resources depending on how old the checkpoints assigned
to them are.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 31

http://www.recipe-project.eu

Figure 9: Comparison of the original and refactored libmango architecture

4 Programming Models Integration

4.1 MANGO Programming Library refactoring

The MANGO Programming Library (libmango) was developed as part of the MANGO project
to enable the programmability of deeply heterogeneous architectures, primarily targeting the
MANGO hardware cluster. As such, its software architecture was tied to the MANGO hardware
architecture and its abstraction layer, and not suitable for managing multiple architectures at
the same time (while the original hardware abstraction layer supported both the MANGO node
and a general purpose node, the two could not be employed at the same time by the resource
manager). In RECIPE, we performed a full refactoring of libmango to achieve greater archi-
tectural independence, and to better isolate the hardware platform abstraction layer from the
programming model implementation, thus reducing the coupling between them and the resource
manager as well. Figure 9 depicts the original architecture of libmango, and the refactored one,
showing how the introduction of a new component, the Heterogeneous Hardware Abstraction
Layer (HHAL), enabled the introduction of multiple concurrent platform libraries.

The new component, HHAL, is described in more detail in Figure 10. One key feature is the
introduction of a dynamic compilation support, as well as the platform managers, which allow
the coexistence at runtime of multiple accelerators.

In addition to these changes, other, less visible modifications entailed a refactoring of internal
data structures to simplify them and reduce the overheads, as well as the introduction of a
new binding for the Python programming language, which allows the development of libmango

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 32

http://www.recipe-project.eu

Figure 10: Architecture of the HHAL

applications in Python (for the host code – device code is constrained by the specific device).

4.1.1 NVIDIA Platforms Integration

One key advance enabled by the refactoring of libmango is the ability to support off-the-shelf
accelerators in addition to the MANGO cluster. In particular, we demonstrated this capability
by developing an Architecture Node to support Nvidia GPU accelerators. The main role of an
Architecture Node in libmango is to map the libmango primitives to those specific of the target
architecture. Figure 11 depicts the role of the Nvidia Architecture Node (NAN) in translating
the MANGO primitives to the CUDA APIs.

4.2 Adaptive Execution Model (AEM) Fortran wrapper

The Adaptive Execution Model (AEM) is a general-purpose resource-managed execution model.
In AEM, the application is designed to run its computationally intensive activities within a
controlled workflow divided in the five stages shown in Figure 6, which are, in the C++ binding,
obtained by implementing the following methods:

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 33

http://www.recipe-project.eu

Figure 11: Nvidia Architecture Node

OnSetup activities performed during the setup of the kernel;

OnConfigure activities performed when assigned resources are changed;

OnRun activites performed during each round of the kernel;

OnMonitor activities performed at the end of each round of the kernel (typically for perfor-
mance monitoring);

OnRelease activities performed at the kernel ending.

To expose these to Fortran, a wrapper has been designed. The Fortran compilers employ the same
mangling scheme as C, with some minor differences. Parameter passing is also compatible with
C. However, AEM is developed in C++, so some adaptation is needed to expose a C interface
compatible with the Fortran compilers. In particular, a bbqFortranMain function is exposed to
perform the generation of the AEM object and a BBQGetAssignedResources function is exposed
to allow the application to inspect the assigned resources.

The scheme of an example application is reported in Listings 7 and 8. Listings 7 reports the
(very simple) main code which contains application code not controlled by the resource manager
(none here) and the call to the resource managed code. Listings 8 contains the implementations
of the five stages of the managed code. The management loop in bbqFortranMain is generated
automatically.

Listing 7: Example Fortran AEM Application.

1 program main

2 print *, "FORTRAN: main: start"

3 call bbqFortranMain("HelloFortran")

4 print *, "FORTRAN: main: end"

5 end program main

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 34

http://www.recipe-project.eu

Listing 8: Example Fortran AEM Application.

1 ! Initialization

2 subroutine BBQonSetup(*)

3 real alpha, beta

4 common /coeff/ alpha, beta

5 alpha=1.0

6 beta=5.1

7 print *, "FORTRAN: onSetup"

8 return 0

9 end subroutine BBQonSetup

10
11 ! Configuration

12 ! Configure parallelism and/or input data related parameters

13 subroutine BBQonConfigure(*)

14 use RTLIB_ResourceType
15 real alpha, beta

16 integer proc_quota

17 external BBQGetAssignedResources

18 common /coeff/ alpha, beta

19 print *, "FORTRAN: onConfigure: ", alpha, beta

20 call BBQGetAssignedResources(PROC_ELEMENT, proc_quota)

21 print *, "proc_quota: ", proc_quota

22 return 0

23 end subroutine BBQonConfigure

24
25 ! Run

26 ! start the execution; computational code should be here

27 subroutine BBQonRun(*)

28 use RTLIB_ExitCode

29 real alpha, beta

30 integer ret, BBQCycles

31 external BBQCycles

32 common /coeff/ alpha, beta

33 print *, "FORTRAN: onRun", alpha, beta

34
35 ret = 0

36 ! Return after 5 cycles

37 if (BBQCycles() >= 5) then
38 ret = RTLIB_EXC_WORKLOAD_NONE

39 end if
40
41 return ret

42
43 end subroutine BBQonRun

44
45 ! Monitor

46 ! Get information needed to decide whether to reallocate resources
47 subroutine BBQonMonitor(*)

48 real alpha, beta

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 35

http://www.recipe-project.eu

49 common /coeff/ alpha, beta

50 print *, "FORTRAN: onMonitor", alpha, beta

51 return 0

52 end subroutine BBQonMonitor

53
54 ! Cleanup

55 ! Deallocate as needed (probably nothing), also write out data, etc.

56 subroutine BBQonRelease(*)

57 real alpha, beta

58 common /coeff/ alpha, beta

59 print *, "FORTRAN: onRelease", alpha, beta

60 return 0

61 end subroutine BBQonRelease

4.3 Adaptive Execution Model (AEM) and Reliability management

In D2.2, we mentioned the need of allowing the application to specify their reliability require-
ments such that for each application we can dynamically set the most suitable checkpoint period.
During the actual design and implementation phase, we decided to follow a different approach,
based on the idea of setting an upper bound to the checkpoint overhead, leaving the local resource
manager in charge of maximizing the reliability, given the overhead constraint.

With this idea in mind, we extended the application recipe file in order to allow the user to set
up the reliability support we integrated in the BarbequeRTRM. In the following, a brief overview
of such support will be provided, leaving a deeper analysis to Deliverable 3.7.

As explained in Section 2.3.3, we introduced in the framework the Dynamic Checkpoint Scheduler,
as part of the Reliability Manager. This development allows the user to set an application-
specific upper bound for the checkpoint overhead. This value is defined as the desired ratio of
the checkpoint time and the total application time. In the recipe, when the Dynamic Checkpoint
Scheduler is enabled, such value can be specified through the tag <chk_overhead ratio=""/>.
The checkpoint scheduler will manage the trade-off between checkpoint overhead and application
performance requirements accordingly.

A second development, not mentioned yet, is the reliability-aware policy. This is a work in
progress, but at the time of the release of the deliverable we already extended the application
recipe file, to enable a per-application configurability of the resource allocation policy. Being
part of the policy made by a PID-based controller, in order to adapt the allocation of the
computing resources, we introduced the possibility of specifying a different set of values of the
PID parameters for each application. The parameters of such controller, i.e. the proportional,
integral and derivative contributions, respectively, kp, ki and kd, are set through the recipe using
the tag <pid_controller kp="" ki="" kd=""/>.

Both modules are set with default values if the dedicated tags are not provided. An example of
application recipe providing the setting of the reliability support is shown in Listing 9.

Listing 9: Example of application Recipe.

1 <?xml version="1.0"?>
2 <BarbequeRTRM recipe_version="0.8">

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 36

http://www.recipe-project.eu

3 <application priority="4">

4 <platform id="org.linux.cgroup" hw="mango">

5 <awms>
6 <awm id="0" value="1" config-time="150">

7 <resources>
8 <cpu>
9 <pe qty="100"/>

10 <mem qty="2" units="MB" />

11 </cpu>
12 <net qty="50" units="Kbps">

13 </resources>
14 </awm>

15 <chk overhead ratio="0.2"/>

16 <pid controller kp="0.5" ki="0.3" kd="0.2"/>

17 </awms>
18 </platform>

19 </application>
20 </BarbequeRTRM>

4.4 Integration of FPGA heterogeneous acceleration

This section describes the integration of the runtime management and remote direct accelerator
memory access (RDaMA) mechanisms explored in RECIPE based on PCI Express peer-to-peer
interactions and made available to user applications through a high-level parallel programming
model. The model of choice is the popular Message Passing Interface (MPI) API, which is
widespread and commonly used for large-scale HPC applications. Figure 12 shows the RECIPE
software stack supporting the integration of heterogeneous acceleration, monitoring functions,
and remote direct accelerator memory access capabilities.

We addressed several choices for the actual implementation of MPI, showing the applicability
of the infrastructure developed in RECIPE for various MPI runtimes, but also identifying the
best match for the different technolgies explored in RECIPE. For the MANGO-based prototype
developed by UPV, we selected the MVAPICH2-GDR implementation of the MPI standard. It
features built-in CUDA support, which was readily extended to provide MANGO support, as
thoroughly explained in Deliverable 4.3. Based on this type of support, we can send and receive
memory buffers directly among the host, the GPUs, and the FPGAs of the MANGO cluster.
For the COTS-based prototype developed by CERICT relying on Xilinx acceleration cards, we
explored a layered software infrastructure, showing the potential of the Unified Communication
X (UCX) framework as an underlying communication support for generic MPI implementations
(in our case, OpenMPI), improving the portability and applicability of the solution developed
in RECIPE. Some low-level details of the setup for the latter scenario are given in the following
subsection.

4.4.1 OpenMPI relying on UCX for RDMA support

The RECIPE prototype located at CERICT was equipped with the OpenMPI runtime over UCX,
which offers an optimised communication layer for the MPI libraries. In our hardware setup, we
have two different nodes (called CERICT-RECIPE-0 and CERICT-RECIPE-1, referred to as

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 37

http://www.recipe-project.eu

Figure 12: RECIPE software stack for heterogeneous acceleration, monitoring, and remote com-
munication (the whole set of components in the stack is fully described in Deliverable 4.3)

Server 0 and Server 1 here). Server 0 features an FPGA card, so it is responsible for exposing
the FPGA memory for remote access. The two servers are connected to each other through an
Infiniband EDR link, using two Mellanox Host Channel Adapters (HCAs), as planned in the
Grant Agreement. Thanks to the UCX layer, OpenMPI is able to use the Infiniband drivers to
perform RDMA through this channel. A basic FPGA design that can be used to test RDMA on
FPGA memory can be found on CERICT Server 1.

In general, the FPGA resources, including the card memory and any component in the FPGA
which is memory mappped, can be accessed through the PCIe bus by means of the Xilinx DMA
(XDMA) driver and an associated FPGA-side component, also called XDMA, acting as a DMA
controller. As an alternative explored in RECIPE, we disabled the DMA capabilities of the IP,
just using the XDMA IP to expose device memory, and relied on the InfiniBand HCA for direct
remote memory access. So, two alternative scenarios were considered:

� Using RDMA with XDMA drivers: in this situation, the FPGA memory is not directly
accessible by the remote node, but the remote communication is performed from the remote
memory of Server 1 to the local (host) memory of Server 0. Then, data is transferred to the
FPGA memory using the XDMA drivers, i.e., the transfer to FPGA memory is handled
locally.

� Using RDMA with PCIe Peer-to-Peer (peer direct): in this case, the FPGA memory is
directly accessible from the remote node, without passing through the local memory.

The custom FPGA shell developed in RECIPE, rFPGA, described in Deliverable 4.3, is con-
figured in such a way to enable the second scenario. In this case, we need to enable the

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 38

http://www.recipe-project.eu

M AXI BYPASS interface on the XDMA, since it is the interface actually used to access the
FPGA memory when using both RDMA and PCIe Peer-to-Peer, while the XDMA drivers are
not used at all. In fact, the interaction with the FPGA memory is not achieved using the XDMA
device files, but using the resource2 file, located under sys-fs, following the path associated
to the FPGA card /sys/bus/pci/devices/0000:3b:00.0. This file represents all the memory
resources accessible using the XDMA.

The above mechanisms have been made accessible to MPI applications, particularly to the
OpenMPI runtime based on UCX. Like any MPI code, OpenMPI applications are made of
different processes, which belong to the same communicator and have each a unique associated
identifier. The identifier can be used to differentiate the behaviour of each process. The processes
can be launched on the local node or on a remote node.

In the CERICT prototype, some practical settings need to be applied for the setup to work,
as listed below. In a production environment, the system administrator would be in charge of
checking such requirements while configuring the machine to enable the RECIPE mechanisms.

� An instance of OpenSM must be running on one of the servers (command sudo opensm).

� The HCA adapters must be addressable on the involved servers. This can be achieved, for
example, with the command sudo ifconfig ib0 10.0.0.2/24, using different addresses
for the local node and the remote node.

� If using PCIe Peer-to-Peer, we need to make sure that the FPGA memory can be registered
and exposed as a remote memory area. To do that, we need to mount the io peer mem

kernel module 2.

� The MPI runtime executing on the local node (the one launching the application) will
spawn the remote processes using an SSH connection. However, to enable that, the local
node must be able to identify itself to the remote node using a certificate, e.g. running a
command like ssh-add id mpi (the authentication via password cannot be used in this
case).

� The executable must be placed at the same path for both the local and the remote node,
so that it is possible for the MPI runtime to locate it when launching the application.

� Using XDMA drivers or the resource2 file to access FPGA memory requires root priv-
ileges. However, running an MPI application with root is not allowed by default and it
is discouraged. For this reason, it is required to enable any user to read and write the
necessary files before running the MPI application. For example, you can use

sudo chmod 666 /dev/xdma0 h2c 0

to allow the application to use channel 0 of the XDMA to perform write operations to the
FPGA memory. This step has to be performed whenever the FPGA is programmed.

For compiling MPI applications, the mpicc command must be used, while mpirun is used for
launching the execution. The parameters passed to mpirun are used to require the OpenMPI
runtime to execute over UCX and use the HCAs and the InfiniBand drivers. They are also used
to identify the servers on which the application will run.

2The io peer mem kernel module is not strictly necessary for the application to work. However, when not
using it, the performance of peer-to-peer transfers is degraded.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 39

http://www.recipe-project.eu

Communication models. An MPI application can be structured according to different com-
munication models. One aspect we need to be aware of is the distinction between an eager
protocol and a rendezvous protocol:

� the eager protocol is preferred when a small amount of data is to be transferred. In this
case, the sender does not have to wait for the receiver to allocate a buffer to receive the
data. Instead, data is immediately sent to the HCA, which can buffer them until the
receiver in ready for reading.

� the rendezvous protocol is used with larger amounts of data. In this case, the sender has
to wait for the receiver to explicitly allocate a buffer before sending data.

Using the UCX layer, OpenMPI is able to automatically switch between the two protocols, based
upon the amount of data involved in a communication. However, it is possible to directly control
the threshold for this switch by passing a few additional parameters to the mpirun command.

4.4.2 Demo Stencil application

Stencil computation is a common kernel in many HPC applications, including computer sim-
ulations for scientific and engineering applications, e.g. for fluid dynamics, partial differential
equations, cellular automata, image processing, etc. Stencil computation is also a core part of
RECIPE Use Case 1. Generic iterative stencil codes work by sweeping a multi-dimensional data
structure, typically a two- or three-dimension grid, in each iteration by using a fixed-size window,
updating the whole structure for the next iteration. The code is representative of computation
kernels and memory access patterns that are typically found in HPC codes. The local and remote
communication mechanisms enabled by RECIPE for dedicated FPGA acceleration provide an
optimal fit for such patterns. In Deliverable 4.3 we show the detail of an FPGA accelerator han-
dling the computation and data access for a demo stencil application, particularly a five-point
Jacobi stencil, matching the potential of dedicated acceleration and High-Bandwith Memory
(HBM) technology available for local (on-card) communication. The infrastructure described in
Deliverable 4.3 also allows the FPGA card memory to be directly exposed across the Infini-
Band fabric in order for other nodes in the system to access the card memory and the stencil
acceleration functionality.

For the purposes of this deliverable, we have exploited this possibility by writing a distributed
MPI-based application based on the above-described software stack, particularly on the Open-
MPI runtime, which in turn relies on the UCX communication framework and hence on RDMA
capabilities. The application assumes the availability of distributed FPGA acceleration nodes
featuring stencil acceleration. Each acceleration node is assigned a tile of the large matrix pro-
cessed by the overall MPI-based stencil application. Each tile, having a size in the order of
GigaBytes of memory, is transferred by means of RDMA mechanisms directly to the acceler-
ator memory, the HBM memory in the case of our experiments. For parallelizing the stencil
application, standard programming practices have been adopted, including the definition of a
halo region redundantly transferred with each tile to the acceleration nodes ad properly sized
according to the number of iterations executed independently by each node. Tiling is performed
row-wise. Figure 13 shows a sequence diagram of the demo stencil application, highlighting in a
compact form the main MPI primitives used in the code.

The application was run on the CERICT prototype, including two servers connected by an In-

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 40

http://www.recipe-project.eu

Figure 13: Sequence diagram of the demo stencil application relying on RDMA, highlighting the
main MPI primitives used in the code.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 41

http://www.recipe-project.eu

finiBand EDR link, where Server 1 is assumed to be the master node distributing the work to
acceleration nodes, while Server 0 hosts the FPGA card (namely a Xilinx Alveo U280 card)
exposing the HBM memory for PCIe peer-to-peer access by the InfiniBand adapter (see Deliv-
erable 4.3), which enables RDMA for the data transfer. Server 0 of course is assumed to host
an MPI process, which is involved in the coordination with the master process on Server 1, but
note that application data never flow to the host memory of Server 0, as the stencil tiles are
directly transferred to the FPGA card memory.

Last, for the purposes of this delverable, the implementation of the stencil code was adapted
to the AEM model featured by BarbequeRTRM. Based on the interfaces described earlier in
this deliverable, the adaptation of the user code was straightforward. To implement the stencil
application following the AEM, we implemented a new class derived from BbqueEXC, which has
a set of methods used by the AEM runtime to launch, monitor and handle the execution. The
actual computation is performed in the onRun() method. More precisely, the execution of a single
stencil calculation is split in multiple onRun() cycles. At the end of every cycle, the application
can ask the resource manager if the available resources have changed: if this is the case, the next
onRun() cycle will be executed on a different resource. Our stencil application is able to execute
both on the CPU or on the FPGA, using the stencil sccelerator. The command used to launch
the application is:

aem-stencil --r R --w W --m M

where R is the total number of rows of the stencil, W is the size of a single work unit (that is to
say, the amount of rows calculated in a single onRun() cycle), and M is the minimum work unit
allowed (if the last onRun() cycle would remain with less rows than M , it is avoided and the rest
of the stencil is calculated in the current cycle). A separate class, called stencil status, is used
to keep track of the status of the computation between different onRun() cycles. As highlighted
above, we relied on common programming practices for parallelizing the stencil application. In
particular, when dividing a stencil computation in multiple cycles, we need to guarantee an
appropriate treatment of the halo region and this treatment is dependent on the amount of the
iterations of the stencil. If we divide the stencil calculation using multiple tiles, each tile should
have a number of rows equal to:

� W + N for the first tile, where the additional N rows are placed on the top of the tile,

� W + N for the last tile, where the additional N rows are placed at the bottom of the tile,

� W + 2N for the other tiles, where N additional rows are placed at the bottom of the tile,
and the other N rows are placed on the top of the tile,

where N is the number of iterations and W , as already highlighted, is the size of the work unit.

Concerning the prototype setup, BarbequeRTRM is installed on CERICT Server 0 at /opt/bosp
and relies on the FPGA OpenCL Runtime to retrieve information about the resources available
on the system. The libraries of the XDMA Shell also need to be installed. The application was
successfully run and evaluated on the CERICT servers. As explained in the next subsections,
we could fundamentally draw the following conclusions from these tests:

� The runtime infrastructure, particularly the support for C/R capabilities, does not intefere
with the application operation from a functional point of view and has a limited impact in
terms of added time overheads, both in absolute terms and compared to a pure-software

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 42

http://www.recipe-project.eu

soluton. An extensive characterization is given in the following subsection.

� The Remote Direct accelerator Memory Access capabilities were verified and proved to be
properly supported by both the hardware infrastructure and the software stack.

� The measured communication figures are aligned with the expected RDMA performance.
A detailed quantitative evaluation for this aspect is given in Deliverable 4.3, where the
underlying middleware support for remote direct accelerator memory access is presented,
while the resulting communication/execution times for the MPI stencil application are
given in Section 4.4.4.

4.4.3 Checkpoint Overhead Characterization

We ran some tests using the stencil application to characterize the overhead incurred by the
checkpoint routine, using the services provided by CRIU and the XDMA Checkpoint Library.
The stencil application was implemented according to the Adaptive Execution Model and able
to execute both on CPU and FPGA. We collected the latencies observed performing periodic
checkpoints with both checkpointing mechanisms, setting the period to 10 seconds. We tested the
application ranging the number of rows of the stencil between 350000 and 500000, considering,
for each workload, three different work units, i.e. 8, 12 and 16 rows of the stencil to be executed
in the same onRun().

Figures 14a-14d show the measurements of the checkpoint time mean value, classified by work-
load. The plots show that, for both technologies, the variation of workload and/or work unit
does not influence the checkpoint time. In the majority of the cases, the average checkpoint over-
head ranges between approximately 1.5 and 2.5 seconds in the case of CRIU, while it fluctuates
between 0.7 and 0.9 seconds when the XDMA Checkpoint technology is used. Considering that,
due to the short duration of the application code execution, we have been able to observe a
maximum of five checkpoints per case, we exploited the above mentioned property to achieve a
more meaningful result, given by the overall mean checkpoint time, shown in Figure 15.

The measurements highlight that the checkpoint mechanism provided by CRIU produces, on
average, an overhead in the order of 2 seconds per dump, with a standard deviation of approx-
imately 550 milliseconds, while the XDMA Checkpoint presents a mean latency of about 730
milliseconds with a standard deviation equal to 180 milliseconds. In conclusion, the experimental
results show that the overhead produced by the latter is 2.8 times smaller than the one produced
by the former, guaranteeing a minor performance loss when the accelerator is in charge of the
execution.

4.4.4 RDMA Performance

This subsection reports on the final numbers evaluated in a full scenario of an MPI stencil
application, exploiting tiling and remote FPGA-based stencil accelerators and remote direct
accelerator memory access capabilities. Note that the internal structure and local performance
of the dedicated accelerator are provided in Deliverable 4.3, while here we refer to a multi-node
setting exploiting the full range of mechanisms introduced by RECIPE. Figure 16 shows the
breakdown of the communication and execution time for various sizes of the matrix processed
by the stencil code. The results directly reflect the findings in Deliverable 4.3. The levels of
communication throughput and computation throughput are in the same order of magnitude.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 43

http://www.recipe-project.eu

8 12 16
Work Units

0

250

500

750

1000

1250

1500

1750

2000

Ch
ec

kp
oi

nt
 m

ea
n

tim
e

- (
m

s)

CRIU XDMA Checkpoint

(a) Nr. of rows: 350000.

8 12 16
Work Units

0

500

1000

1500

2000

Ch
ec

kp
oi

nt
 m

ea
n

tim
e

- (
m

s)

CRIU XDMA Checkpoint

(b) Nr. of rows: 400000.

8 12 16
Work Units

0

500

1000

1500

2000

2500

Ch
ec

kp
oi

nt
 m

ea
n

tim
e

- (
m

s)

CRIU XDMA Checkpoint

(c) Nr. of rows: 450000.

8 12 16
Work Units

0

500

1000

1500

2000

2500

Ch
ec

kp
oi

nt
 m

ea
n

tim
e

- (
m

s)

CRIU XDMA Checkpoint

(d) Nr. of rows: 500000.

Figure 14: Mean checkpoint time using CRIU (blue bars) and XDMA Checkpoint Library (orange
bars) relying on the checkpointing hardware support deployed in the RECIPE rFPGA custom
shell.

The absolute bandwidth values and the asymmetry exhibited by read operations depend purely
on the particular physical configuration of the PCIe topology in the node which hosts the FPGA
card, as explained in Deliverable 4.3. Overall, for a 4GB tile, the transfers to/from the remote
node through RDMA and the FPGA stencil computation require a total time of around 4.57 s.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 44

http://www.recipe-project.eu

CRIU XDMA Checkpoint
Checkpointing mechanism

0

500

1000

1500

2000

2500
Ch

ec
kp

oi
nt

 m
ea

n
tim

e
- (

m
s)

Figure 15: Overall checkpoint mean time.

5 Conclusions
In this deliverable, we described the integration effort of the RECIPE software stack. The in-
tegration has involved the developments of software components coming from different work
packages.

We described how the local resource manager, which occupies a central role in the overall soft-
ware stack, relies on a set of libraries or operating system interfaces for monitoring the status
and perform the assignment of hardware resources. Such interfaces are in part already available
and in part developed for the RECIPE targets (FPGA Monitoring Library, HN Library). For the
reliability and the timing analysis part, we developed the Hardware Relibility and the Timing
Analysis libraries and integrated them in the BarbequeRTRM management flow. Furthermore,
a remarkable achievement of the last year of activity is represented by the support of the Check-
point/Restore mechanisms on a heterogeneous configuration based on a computational node by
a high-end multi-core CPU and FPGA hosting a custom accelerator. We provided some experi-
mental results for this, showing how the checkpoint operation of FPGA-hosted accelerations is
characterized by a lower overhead with respect to processes running on CPU.

We have also described the current status and recent advances on the Global Resource Man-
ager, and the changes with respect to the setup described in previous deliverables (and more
specifically D2.3) and how applications can be launched also using the underlying HELENNA
infrastructure (which is also described to a greater detail as part of D1.8). The assessment of
overall overheads when using the GRM for the three Use Cases of RECIPE, and more specifically
for UC3, will be provided in D1.9.

Finally, on the programming model side, we shown in previous deliverables how we developed
custom programming models targeting heterogeneous platform (the MANGO Programming Li-
brary) and enabling the possibility of adapting the application to the set of resources assigned
at run-time and dynamically changed by the local resource manager policy (the Adaptive Exe-

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 45

http://www.recipe-project.eu

Figure 16: Breakdown of the communication and execution time for various sizes of the matrix
processed by the stencil code.

cution Model). While the MANGO Programming Library has been refactored to improved the
integration of multiple target platforms, the Adaptive Execution Model has been enriched by
the introduction of different language wrapper layers. In D2.4 we described the Python support,
while in the current one we introduced the Fortran wrapper. Fortran is in fact one of the lan-
guages characterizing the implementation of the UC2, other than being a language still in use
in scientific applications running on HPC infrastructures. Finally, in D2.2 we have shown the
addition of the support to legacy applications (no porting required), such that the local resource
manage could control applications not exploiting any of the proposed programming models, even
if this implies some limitations in terms of control capabilities.

As already stated, the actual exploitation of the effort described in this deliverable will be
represented by the resource allocation policies described in the next D3.7.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 46

http://www.recipe-project.eu

References

[1] CRIU. CRIU: Checkpoint/Restore in Userspace. https://criu.org.

[2] Dmtcp-Crac. Dmtcp-crac/crac-early-development.

[3] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman. Crum: Checkpoint-restart support
for cuda’s unified memory. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER), pages 302–313, 2018.

[4] Twinkle Jain and Gene Cooperman. Crac: Checkpoint-restart architecture for cuda with
streams and uvm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020.

[5] Khronos OpenCL Working Group. The OpenCL Specification, Version 2.0. https://www.
khronos.org/registry/cl/specs/opencl-2.0.pdf, October 2014. Lee Howes and Aaftab
Munshi eds.

[6] Paul Menage. Linux cgroups v1. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt.

[7] Patrick Mochel and Mike Murphy. sysfs - The filesystem for exporting kernel objects.
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html.

[8] NVIDIA. NVIDIA Management Library (NVML). https://developer.nvidia.com/

nvidia-management-library-nvml.

[9] Srinivas Pandruvada. Running Average Power Limit - RAPL. https://01.org/blogs/

2014/running-average-power-limit-%E2%80%93-rapl.

[10] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. chronovise: Measurement-
based probabilistic timing analysis framework. Journal of Open Source Software, 3(28):711,
2018.

[11] Taichiro Suzuki, Akira Nukada, and Satoshi Matsuoka. Transparent checkpoint and restart
technology for cuda applications. In GPU Technology Conference (GTC), volume 20156,
2016.

http://www.recipe-project.eu 2.5 RECIPE Software Stack Integration — 47

https://criu.org
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
http://www.recipe-project.eu

	Introduction
	Overview and document structure

	Local Resource Manager: BarbequeRTRM
	Platform Integration
	Platform Interfaces
	FPGA Monitoring Library

	Energy Monitor
	Application Energy Profiling

	Reliability Management Integration
	Checkpoint/Restore in Userspace (CRIU)
	Advanced C/R Engine Library
	Reliability Manager Developments

	Timing Analysis Integration

	Global Resource Manager: SLURM
	Platform Deployment and Integration
	Local Resource Manager and HELENNA Integration
	Integration and support for consistent checkpoint/restore

	Programming Models Integration
	MANGO Programming Library refactoring
	NVIDIA Platforms Integration

	Adaptive Execution Model (AEM) Fortran wrapper
	Adaptive Execution Model (AEM) and Reliability management
	Integration of FPGA heterogeneous acceleration
	OpenMPI relying on UCX for RDMA support
	Demo Stencil application
	Checkpoint Overhead Characterization
	RDMA Performance

	Conclusions

